

Successful Field Applications of Alkaline Activated Klozur[®] Persulfate

Brant A. Smith P.E., Ph.D. October 29, 2014

New Name. Decades of Experience.

Who We Are...

Field-Proven Portfolio of Remediation Technologies Based on Sound Science

In Situ Chemical Oxidation

- 1. Klozur® persulfate
- 2. Klozur® CR

In Situ Chemical Reduction

- 3. EHC®
- 4. EHC® Liquid
- 5. Daramend®

Aerobic Bioremediation

- 6. Terramend®
- 7. PermeOx® Ultra

Immobilization/Stabilization

8. EHC® Metals and MetaFix™

Enhanced Reductive Dechlorination 9. ELS™

NAPL Stabilization/Mass Flux Reduction 10. ISGS™

What is ISCO

- In Situ Chemical Oxidation (ISCO)
- Addition of chemicals to the soil and groundwater that react with a wide variety of chemicals of concern (COCs) by taking electrons from, or oxidizing, those COCs
- Oxidative, reductive and nucleophilic pathways have also been shown to be effective under certain conditions

Introduction to Klozur[®] Persulfate

Examples of Contaminants Destroyed by Klozur Persulfate

Chlorinated Solvents

Environmental

Solutions

PCE, TCE, DCE TCA, DCA Vinyl chloride Carbon tetrachloride Chloroform Chloroethane Chloromethane Dichloropropane Trichloropropane Methylene chloride

Others

Carbon disulfide Aniline PVA/ TNT / DNT **C**

TPH BTEX GRO DRO ORO creosote

Oxygenates MTBE TBA

Perflourinated

Freon PFOS PFOA PFBA

Chlorobenzenes

Chlorobenzene Dichlorobenzene trichlorobenzene

Phenols

phenol Pentachlorophenol nitrophenol

PAHs

Anthracene Benzopyrene Styrene Naphthalene Pyrene Chrysene trimethylbenzene

Pesticides

DDT Chlordane Heptachlor Lindane Toxaphene MCPA Bromoxynil

7

Why ISCO?

- Many in situ remediation technologies to choose from, why pick ISCO?
 - <u>Cost</u>: Often the lowest cost alternative
 - <u>Time</u>: Provides results quickly, usually within weeks to months of an application
 - <u>Effectiveness</u>: ISCO can treat a wide assortment of typical COCs
 - <u>Contaminant Mass</u>: ISCO can treat a wide variety of contaminant concentrations including heavily impacted areas that may inhibit bioremediation

KLOZUR[®] PERSULFATE

Introduction to Klozur[®] Persulfate

Klozur[®] Persulfate is:

- Based on the sodium persulfate molecule
- A strong oxidant used for the destruction of contaminants in soil and groundwater
- Aggressive and fast acting chemistry with extended subsurface lifetime (weeks to months) and little to no heat or gas evolution
- Applicable across a broad range of organic contaminants
- •Highly soluble in water (significant oxidant mass is smaller volumes)

Klozur[®] Activated Persulfate is based upon the persulfate anion:
 O

• Persulfate is a peroxygen, and similar to hydrogen peroxide, it can be split at the O-O bond forming the sulfate radical:

$$^{-}O_{3}S-O-O-SO_{3}^{-} \rightarrow ^{-}O_{3}S-O \bullet \bullet O-SO_{3}^{-}$$

- Common activation methods include:
 - Alkaline activation
 - (OH•, SO₄•⁻, O₂•⁻)
 - Iron or iron chelate activation
 - (SO₄•⁻)
 - Heat activation
 - (Temperature dependent: OH●, SO₄●⁻, O₂●⁻)
 - Hydrogen peroxide activation
 - (OH•, SO₄•⁻, O₂•⁻)

Oxidant	Standard Reduction Potential (V)	Reference			
Hydroxyl radical (OH•)	2.59	Siegrist et al.			
Sulfate radical (SO ₄ • ⁻)	2.43	Siegrist et al.			
Ozone	2.07	Siegrist et al.			
Persulfate anion	2.01	Siegrist et al.			
Hydrogen Peroxide	1.78	Siegrist et al.			
Permanganate	1.68	Siegrist et al.			
Chlorine (HOCl)	1.48	CRC (76th Ed)			
Oxygen	1.23	CRC (76th Ed)			
Oxygen	0.82	Eweis (1998)			
Fe (III) reduction	0.77	CRC (76th Ed)			
Nitrate reduction	0.36	Eweis (1998)			
Sulfate reduction	-0.22	Eweis (1998)			
Superoxide (O₂•⁻)	-0.33	Siegrist et al.			
ZVI	-0.45	CRC (76th Ed)			

Persulfate anion kinetics are generally too slow for most contaminants. As a result, you must activate persulfate to form the sulfate radical.

Activated Persulfate

produces a radical which is more powerful and kinetically fast

PeroxyChem always recommends using an activator

proper activation method is based on contaminant, site lithology, and hydrogeology

Purchase of PeroxyChem's Klozur[®] Persulfate includes rights to practice the inventions covered by global patents in the purchase price of the product.

PeroxyChem

Activator Selection

Estimated Activator Usage

Environmental

Solutions

high pH peroxide

heat

- Alkaline Activated Persulfate
 - Premier activation method
 - Best suited for most applications
 - Iron-Chelate Activated Persulfate
 - Chlorinated ethenes and hydrocarbons
 - Less contaminant mass
- Heat
 - Complex sites
 - Polishing step after thermal treatment
- Hydrogen Peroxide
 - Sites that benefit from vigorous reaction with both hydrogen peroxide and sodium persulfate

ALKALINE ACTIVATED PERSULFATE

Outline

- Two brief Case Studies
- Alkaline Activated
 Persulfate
- Two detailed Case Studies

MGP Site in Illinois

- Contaminant:
 - ~17,000 mg/Kg TPH
 - ~45,000 µg/L Benzene
 - ~140 µg/L Naphthalene
- Remedial goals:
 - TPH to less than 9,000 mg/Kg
 - Reduce benzene in groundwater by greater than 90 percent
- Applied 46,200 lbs of AAP to site over 3 applications
 - 32 g Klozur per Kg soil

Courtesy of XDD, LLC

- Results:
 - Less than 2,500 mg/Kg TPH
 - Benzene in groundwater reduced by greater than 98 percent
 - State of Illinois issue a No
 Further Action letter

Active Industrial Site

- PCE, 1,1,1-TCA, and 1,4dioxane (DNAPL source)
- AAP does not produce gas during treatment
- Treated with two applications totaling 31,000 Kg Klozur[®]
 - 25 g Klozur per Kg soil
- Remedial goal of less than 1 mg/L for each contaminant

	Average Contaminant Concentrations (µg/L)									
Contaminants	Baseline	Post 1st Application	Post 2nd Application	Total Percent Reduction						
PCE	11,987	4,819	113	99.1						
1,1,1-TCA	8,736	5,698	64	99.3						
1,4-Dioxane	410	1,029	165	59.8						

Alkaline Activation: Chemistry

- Sodium persulfate is activated when the solution is raised to pH > 10.5
- Alkaline Activation-*simple version*: ۲ OHpH >10.5 $S_2O_8^{2-} \rightarrow 2SO_4 \bullet$
- Alkaline Activation-complex version (Furman et al., 2010): ۲

$$S_2O_8^{2-} + 2H_2O \rightarrow HO_2^{-} + 2SO_4^{2-} + 3 H^+$$

 $HO_2^{-} + S_2O_8^{2-} \rightarrow SO_4^{-} + SO_4^{2-} + H^+ + O_2^{-}$
 $SO_4^{-} + OH^- \rightarrow OH^{-} + SO_4^{2-}$

(note: $H_2O_2 \leftrightarrow HO_2^- + H^+ pK_a = 11.7$)

- Complex version of the reaction results in the transient oxygen species of ۲ $SO_4 \bullet^-$, $OH \bullet$, $O_2 \bullet^-$, and HO_2^-
- Analogous to the chemistry that has been studied with catalyzed hydrogen ۲ peroxide (CHP)

Environmental

Solutions

- Alkaline activation - $(OH \bullet, SO_4 \bullet^-, O_2 \bullet^-)$
- Has been shown to be reactive with:
 - Reduced organics (PAHs, BTEX, TPH, etc)
 - Chlorinated ethenes (PCE, TCE, DCE, and VC)
 - Chlorinated methanes or ethanes (1,1,1-TCA, CT, etc)
 - Oxygenates (MTBE, 1,4-Dioxane, etc)
 - Perfluorinated acids (PFOA, PFBA, etc)

Oxidant	Standard Reduction Potential (V)	Reference			
Hydroxyl radical (OH•)	2.59	Siegrist et al.			
Sulfate radical (SO ₄ • ⁻)	2.43	Siegrist et al.			
Ozone	2.07	Siegrist et al.			
Persulfate anion	2.01	Siegrist et al.			
Hydrogen Peroxide	1.78	Siegrist et al.			
Permanganate	1.68	Siegrist et al.			
Chlorine (HOCl)	1.48	CRC (76th Ed)			
Oxygen	1.23	CRC (76th Ed)			
Oxygen	0.82	Eweis (1998)			
Fe (III) reduction	0.77	CRC (76th Ed)			
Nitrate reduction	0.36	Eweis (1998)			
Sulfate reduction	-0.22	Eweis (1998)			
Superoxide (O₂•¯)	-0.33	Siegrist et al.			
ZVI	-0.45	CRC (76th Ed)			

Bench Scale Tests

Evaluate site specific geochemical impacts on ISCO process chemistry

- Purpose and benefits:
 - Can be used to refine cost estimates during a feasibility study
 - Develop engineering parameters for a field application
 - Evaluate potential failure mechanisms
 - Confirm treatment efficacy
- Specific engineering parameters for AAP typically derived from Bench Scale Tests
 - Base buffering capacity
 - Non-target demand (SOD, TOD, KDT, NOD, etc)
 - Degradation ratio/Persulfate efficiency number

Field Applications

ISCO requires establishing contact between a sufficient mass of oxidant with the contaminant mass in the subsurface

- Common steps following Bench Scale Tests:
 - Field Pilot Test
 - Full Scale Application
- Design and strategies for a field application are typically similar
 - Monitoring, objective and goals often different

- Cost of NaOH
 - Dependent upon volume/shipping container
 - Drums>Totes>>>Tankers
 - NaOH in tankers may be 30 percent cost of drums
 - AAP can be least expensive activator method

CASE STUDY: ACTIVE CONSTRUCTION SITE IN NEW YORK CITY

What People Think Sites Look Like

What Sites Usually Look Like

What This Site Looked Like

Site Background

- Active construction of a 30+ story high rise building for retail and residential space
- Located 3 blocks from Penn Station in Manhattan (Chelsea)

Site Background

- Contamination (average baseline values):
 - BTEX (3,000 μg/L)
 - Naphthalene (140 μ g/L)
 - GRO/DRO (1,400 mg/Kg)
 - Different signatures/fingerprints across site
- Contaminant Source:
 - Previous site uses include lumber yard, metal works facility, auto-repair facility, coal yard, piano manufacture, livery car service, and gasoline station
 - Leaking underground storage tanks

Bench Scale Tests: Phase 1

- Evaluated:
 - Catalyzed Hydrogen Peroxide
 - Acid buffering capacity: 6.0 -9.7 g H₂SO₄ per Kg soil
 - Stability: 1 hr (unstabilized) to 8 hr (stabilized) half life
 - Activated Persulfate
 - Base buffering capacity: 1.6 g NaOH / Kg Soil

Treatment	Oxidant Test Concentration	Soil Oxidant Demand (grams oxidant / Kilogram dry soil)	Total Oxidant Demand (grams oxidant / Kilogram dry soil)
Unsetimated Demulfate	50 g/L Persulfate	1.9	2.0
Unactivated Persuitate	200 g/L Persulfate	3.0	3.6
Iron Ashington Down Kets	50 g/L Persulfate	2.5	2.7
from Activated Persuifate	200 g/L Persulfate	5.2	15.1
Alkaline Activated Persulfate	50 g/L Persulfate	14.1	13.3
	200 g/L Persulfate	16.0	43.3

• SOD₁₄:

Courtesy of XDD, LLC and Fleming-Lee Shue

Bench Scale Tests: Phase 2

- Alkaline Activated Persulfate selected for Phase 2 Tests
 - Stability
 - Return pH to near neutral
 - Compatibility with construction materials

- Results
 - Soils
 - BTEX: 64 to 77 percent reduction
 - DRO: 21 to 33 percent reduction
 - Groundwater
 - Some treatment
 - Some increases
 - Overall ~50 percent treatment in 14 days with ~50 percent residual persulfate

Field Application Design

- Target Area: 6,500 ft²
- Target Interval: ~6 ft
- Five injection wells
 - Large ROI-likely treated outside target area
- Design Mass:
 - 100,000 lbs to 180,000 lbs
- Application:
 - Kozur
 - 72,700 lbs (33 supersacks)
 - 17 g Klozur per Kg soil
 - NaOH
 - 60,300 lb 50 percent solution

- Injection Volume:
 35,000 gals
- Concentrations
 - Injection: 250 g/L
 - Formation: 55 g/L
- RemMetrik[®] Process
 - Wavefront Sidewinders
 - Pressure pulsed strategy
- 9 Day schedule
 - 3 days mobilize/demobilize
 - 6 days of injection
 - 5.5 supersacks per day
 - Construction activities limited

Results

- Average groundwater
 - 92 to 95 percent
 treatment 9 months
 after treatment
- Average soil
 - 99.9 percent reduction of BTEX
 - 99.2 percent reduction
 of DRO + GRO
- Site closed by NY-DEC

CASE STUDY: INDIAN HEAD SITE 47

Site Background

• Geology:

Environmental

Solutions

- Shallow confined aquifer
- Silty sand lithology: 0 to 16-20 feet bgs
- Silt/Clay layer starting at 18 –
 20 feet bgs; thickness > 30 feet
- Water table between 5 and 6 feet bgs
- Past releases disposal of spent catalyst and inerting agent from 1957 – 1965

Contaminants	Max. Concentration (µg/L)
СТ	150,000
CF	61,000
PCE	2,200
TCE	420
Cis-1,2-DCE	480
Carbon disulfide	11,000

Bench Study

- Evaluated
 - Catalyzed Hydrogen Peroxide
 - Alkaline Activated Persulfate (AAP)
 - Micron scale
 - ZVI
 - Nickel catalyzed ZVI
 - Nano-scale ZVI

- AAP
 - 50 g/L
 - 75 percent CT in 1 application
 - >98 percent in 3 applications
 - 200 g/L
 - >99 percent after 1 and 3 applications
- CHP
 - Effective but concerned about gas evolution
- ZVI
 - Effective in treating CT, but persistent daughter products observed (chloroform and methylene chloride)

Pilot Test Baseline: CT and PCE Plumes

CT Courtesy of XDD, LLC , CH2M HILL, and US Navy PCE

Pilot Study

- Conducted Fall 2009
- Injected:
 - 46,700 lbs of sodium persulfate
 - 20 g Klozur per Kg Soil
 - 91,600 gals (55 g/L to 80 g/L)
 - 14 clusters of shallow/deep injection wells
- Plan for second injection after period of monitoring

Actual vs. Design

Pilot Test Conclusions

- Pilot Test deemed a success after a single application
 - ~80 percent reduction in contaminant mass
- Decision made to go full scale with AAP
- Well installation issues with significant underground utilities noted

Full-Scale Pre-Design Activities

- Recirculation system considered as alternative to direct injection
 - Aquifer Performance Test

Environmental

Solutions

- Refine hydraulic conductivity in anticipation of a recirculation system
- Flow and Transport Model
 - Assessed flow paths, areas of influence, and particle transit times for recirculation system
- Data Gap Investigation
 - Refined target area (CT + PCE
 > 500 ug/L)

Courtesy of XDD, LLC , CH2M HILL, and US Navy

40 40

PeroxyChem

ISCO Recirculation Strategy

- Target area 22,850 ft²
- 42 Injection wells
- 2 Horizontal extraction wells
- Rotation between 3 sets of 18 injection wells simultaneously

General Design

Environmental

Solutions

- -204,600 lbs of Klozur Persulfate
 - •36 g Klozur per g COCs
 - •19 g Klozur per Kg Soil
- -351,000 lbs of 25 percent NaOH
- -Up to 477,800 gal of recirculated water

Courtesy of XDD, LLC , CH2M HILL, CB&I, and US Navy

Full-Scale Application

Environmental

Solutions

Parameter	Designed	Actual
Target persulfate concentration (g/L)	50	178
Sodium persulfate / NaOH- 25%wt (Ibs)	204,600 / 351,151	204,972 / 351,400
Injection volume (gals)	477,800	139,200
Total extraction rate (gpm)	38	5

-		1002	-	-	/						-	IS	47MW3	31	1	1
Contract of the			100	/							Pa	rameter	pН	Persulfate (g/L)		
950	1948	10.1									в	aseline	6,0	0	Real Property	1223
000		1000	1			13	S47MW3	2			м	aximum	13.0	35	1 mon	100
Concession in the		IS	47MW0	3		Parameter	pН	Persulfate (g/L)	E		100	1. Mar		-	2	and and
and the second second	-	Parameter	pH	Persulfate	1.16	Baseline	6,6	0						-		100
-	367	Baseline	6.5	0	States.	Maximum	13.5	47								
- 15	1000	Maximum	13.5	82		100	1.1.86	inter								120.00
100					_	1000	32		H							5256
						-	IS	47MW2	1							
		IS47MV	V19			11	Parameter	pН	Persulfate	a						
	Para	ameter pH	Persulf	ate	00	-	Baseline	8.9	0	E .						C 75
	Ba	seline 9.4	0	-		the way	Maximum	13.2	38	E		<u>.</u>	IS4	7MW29		200.5
100000	Max	dmum 13.7	44	-	r 1		-		in and	A		Par	ameter	рн Р	ersulfate (g/L)	
-		TOT I		1	100	100	-			A A		Be	seline	4.6	0	
1000	1.8	*	-		Gille	1	\$47MW2	20		E		Ma	ximum	9.9	0	
Constant of the		1:	S47MW	25		Parameter	рн	Persulfati (g/L)	•	H _A				-	PROPERTY.	
	1	Parameter	pH	Persulfate (g/L)	ing in the	Baseline	6.8	0		E Star						1 i i i i i i i i i i i i i i i i i i i
	1	Basejne	6.3	0	A. Co	Maximum	13.0	44		E						
the same of the same		Maximum	12.7	23	2	1000	-	Sec.	100	Ę		100	04710	120	14	1
	(See 10					1.00						Paramete	0H	Persulfa	ite to	
		1				1000		-	1047104	24	8	Baseline	51	(g/L)	.	
		A.	-	S47MM2	22	120	20	Param	ater pH	24 Persulfate	H	Mandanua	12.0		1	
1 CE 2 CE 2		E.	Paramete	r pH	Persulfate	4	100	Basel	na 61	(g/L.)	E.	maximum	12,0		-	
and the second	100	A	Baseline	5.6	(gr.)	The second secon	-	-	42.0	47	A					
IS47	MW26	A A	Maximum	13.2	48			Maxim	13.2	4/	E					
Parameter	pH (g/L)	● 目						Sala B			E			1		1
Baseline	6.0 0	A	-		and and			-	S47	1W28		B				
Maximum 1	0.4 74	H	0	15	547MW04	4		Pa	rameter p	H Persulfa	Ae al	B	- 12			
11-20	1.1	H	-	Parameter	pН	(g/L)		в	aseline 5.	.5 0	No.	H		-		
10- 10		F		Baseline	5.5	0	THE R. A.	M	aximum 12	2 4	4	P				
Sec. 1			E	Maximum	8.7	18	1000				•					
and the	1		B				*	-	1990 - 18 A							
11/1	ALC: NO		Ħ				IS	47MW2	3							
11							Parameter	pH	Persulfate (g/L)					1		-
6 200						100	Baseline	5.4	0						HEW-2	Descriftere
and the	н	EVV-1	aulfato	-			Maximum	12.6	41				Р	arameter	pН	(g/L)
1000	Parameter	pH Pers	g/L)	and the second second		and a				1000				flaximum	13.0	4
	Maximum	12.7	21												-	

Full-Scale Remedy: Results

Courtesy of XDD, LLC , CB&I, CH2M HILL, and US Navy

- Final soil and groundwater data yet to be collected
- Assessment of nonvalidated groundwater data:
 - CT: 83 to 96 percent reduction
 - PCE: 35 to 87 percent reduction

Environmental

Solutions

Health and Safety

 No H&S issues on any of these events

Environmental

Solutions

- H&S requirements for alkaline material similar to those required for oxidants
 - Trained staff and proper equipment

Conclusion

 Alkaline Activated Persulfate is a potent in situ remedial technology

– Oxidants

- Reductants
- Can degrade chlorinated ethenes, ethanes, and hydrocarbons (among others)
- Can be safely and cost effectively implemented in the field
- Long history of successful field applications

Thanks to

- XDD, LLC
 - Mike Marley
 - Karen O'Shaughnessy
- Fleming-Lee Shue
 - Steve Panter
- U.S. Navy
 - Gunarti Coghlan
 - Joe Rail

Thank You

Environmental Solutions Team

Technical Application Managers Subject matter experts and market segment focused

Dan Leigh P.G., C.Hg. ERD and Federal Programs Daniel.Leigh@peroxychem.com 925-984-9121

Environmental

Solutions

Alan Seech, Ph.D. Metals, Laboratory, and ISCR <u>Alan.Seech@peroxychem.com</u> 949-388-7065 Fayaz Lakhwala, Ph.D. ISCR and Consultants Fayaz.Lakhwala@peroxychem.com 908-688-8543 Brant Smith, Ph.D. In Situ Chemical Oxidation Brant.Smith@peroxychem.com 603-793-1291

49

PeroxyChem