Understanding ISCO Field Applications by Assessing Geochemical Data

Josephine Molin, Technical Applications Manager

Soil & Groundwater Remediation

Webinar | April 26, 2023

Introduction

– What can we learn from geochemical analyses

Review of key persulfate geochemical indicators

- Direct measurement of persulfate
- Persulfate breakdown products
- Changes to geochemical parameters

Case example

- Successful application
- Underdosing (rebound)
- Recontamination from inflowing groundwater
 Poor distribution

Common In Situ Remediation Challenges

- Dealing with unknowns / data gaps
- Dealing with heterogenic conditions
 - Lithology + contaminant distribution
- Uncertainties in reagent demand calculations
- Establishing contact (injection strategies)

Successful *In Situ* remediation requires: Sufficient <u>dose</u> of reagents to <u>contact</u> contaminants over a sufficient <u>time</u> period

Persulfate has a distinct chemical 'fingerprint'

- Following the successful application of persulfate, a distinctive signature of certain parameters would be expected:
 - Analyses of active persulfate in GW
 - Increase in persulfate breakdown products (sodium/potassium & sulfate)
 - Key geochemical parameters: EC, ORP, pH
- A detailed comparison of these parameters in combination with other site data can be used to better understand an application and the site.

Geochemical Data could Help Evaluate:

- Reagent distribution / radius of influence (ROI)
- Reagent longevity
- Reagent transport
- Residence time of reagents within the target area
- Potential for continued treatment via anaerobic oxidation
- Groundwater velocity and flow paths
- Contaminant source areas

Geochemical Data can Help Interpret Performance

- Geochemical analyses can help distinguish between:
- Underdosing
- Lack of distribution / contact
- Insufficient contact time
- Rebound from sorbed mass (ie. under-dosing)
- Recontamination from inflowing groundwater over time (*ie.* upgradient source remaining)

Understanding the problem allows modifying the remedial action plan appropriately for the next phase if needed.

Persulfate Geochemical 'Fingerprint'

Persulfate in Groundwater

Persulfate Breakdown Products Na⁺ / K⁺ SO₄²⁻

Key Geochemical Parameters ORP pH EC

Direct Analyses of Persulfate = 'Active' Reagent

Klozur[®] Field Test Kits

Easy field measurements of persulfate:

- Distribution/ROI determination during injections
- Persulfate presence/absence in groundwater over time:
 - Concentrations of active persulfate remaining
- Persulfate Presence/Absence in Soil

- 10 samples per kit
- Range: 1 g/L to 100 g/L
- Accuracy:
 - Range 1 50 g/L (+/- 1 g/L)
 - Range 50 100 g/L (+/- 2 g/L)

Direct Analyses of Persulfate = 'Active' Reagent

CHEMets Visual Kits

- Range: up to 70 mg/L
 - Below 'effective' range for persulfate (typically reaction kinetics drops below ~1-2 g/L)
- Interferences from oxidized minerals (Fe(III)) & common activators:
 - Not recommended for concentration monitoring
- Fast and inexpensive → could be used for positive / negative screening and then confirm concentration using Klozur[®] Field Test Kits

Persulfate Composition / Breakdown Products

- Two types of persulfate commonly used in environmental applications:
 - Klozur SP Sodium Persulfate:
 - Highly soluble, injects as a liquid
 - Source zone / hotspot treatment
 - Klozur KP Potassium Persulfate:
 - Solubility limited extended release
 - PRBs, low permeability soils, high Koc contaminants
- Both releases the persulfate anion:
 - $Na^+ \text{ or } K^+$

	Klozur [®] SP Na ₂ S ₂ O ₈	Klozur [®] KP K ₂ S ₂ O ₈
Sodium	19%	-
Potassium	-	29%
Sulfate	81%	71%

- Klozur SP \rightarrow analyze for sodium and sulfate
- Klozur KP → analyze for potassium and sulfate

- Na⁺ and K⁺ typically conservative and stays in solution:
 - Assess distribution, migration and flow paths
- Sulfate can transform:
 - Precipitate to form minerals (eg. calcium sulfate)
 - Reduce to form sulfide (~-150 mV to ~-200 mV)

Persulfate activators may also add to fingerprint: NaOH – 58% Na⁺

 $Ca(OH)_2 - 54\% Ca^{2+}$

Persulfate Residuals – Expected Concentrations at Uniform Distribution

Example expected conc. breakdown products added to groundwater (uniform distribution):

	Klozur [®] SP Na ₂ S ₂ O ₈	Klozur [®] KP K ₂ S ₂ O ₈
	g/L	g/L
Example target dose	20	20
Sodium	3.8	-
Potassium	-	5.8
Sulfate*	16.2	14.2

*Sulfate may precipitate (not conservative)

Persulfate distribution:

Groundwater concentrations of Na⁺ and K⁺ could be directly compared to injected dose:

- Conc < expected reagents displaced over larger area or outside of intended zone?
- Conc > expected preferential pathways or smaller ROI?

Key Persulfate Geochemical Indicators

- Electric conductivity (EC) increases in response to persulfate and its breakdown products
- **ORP** elevated while persulfate still active.
- **pH** persulfate releases sulfuric acid as it decomposes → pH decreases:
 - Extent of pH effect depends on the buffering capacity of the soil and activation chemistry employed.
 - Alkaline activation: Initial increase in pH due to addition of base activator followed by gradual decrease as the persulfate reacts.

Initial pH increase due to alkaline activation

What We Like to See – Direct Zone of Influence

- Residual Persulfate: >50% of pore volume concentration
- Conductivity: 2 to 3 order of magnitude increase over background
- ORP: 300 mV to 600 mV
- pH: If alkaline activated pH should be >10.5 while persulfate is present
- Sodium/Potassium and Sulfate: Proportional to pore concentration
 - Sodium Persulfate: 19% sodium and 81% sulfate
 - Potassium Persulfate: 29% potassium and 71% sulfate

Evonik recommends minimum of: 10 g/L in a pore volume for petroleum hydrocarbons; and, 20 g/L persulfate for oxidized contaminants needing the reductive pathway

Timing of Geochemical Fingerprint

Direct zone of influence : Immediate increase in persulfate, Na⁺, EC & sulfate Indirect zone of influence:

Delayed increase → persulfate & breakdown products migrated into area Over time: <u>No active persulfate</u> Geochemical signature Disappearance of chemical footprint (EC, Na/K) over time → untreated groundwater is migrating into the area If contaminant concentrations rebounds after the persulfate has been spent, geochemical data can help distinguish between a true rebound vs recontamination from inflowing groundwater:

True Rebound:

 Contaminant partitions back into groundwater from soils → sorbed concentrations remaining

Recontamination:

 Untreated, contaminated groundwater migrates back into treatment area

EC and Sodium can Help Distinguish between Rebound vs. Recontamination

<u>True Rebound</u> <u>– Repartitioning from Soils</u>

Conductivity, sodium/potassium, etc stay similar to peak (no influx of fresh GW) while contaminant concentration increase

WINNER WINNER WATER WATER WATER WATER WINNER WINNER WATER WATER WATER WATER WATER WATER WATER WATER

Possible Recontamination from Inflowing Groundwater

The disappearance of a geochemical footprint (EC & Na⁺/K⁺) suggests that new, untreated groundwater migrated into the area

Rebound scenario:

- Indicates an insufficient dose:
 - Sorbed mass / non target demand not fully accounted for?

– Adjust dose

- Distribution issues? Didn't receive intended dose?
 - Application method may need to be modified

Recontamination scenario:

- May be indicative of upgradient contaminant source zone that requires treatment
- Common in pilot tests:
 - Consider residence time and GW flow velocities

Potential for Anaerobic Oxidation / Sulfate Reduction

Potential for Anaerobic Oxidation / Sulfate Reduction: Example Data from Western Michigan University Bench Study: PAHs in Sediments

- Sulfate reduction evaluated in batch study with Klozur CR
- ORP drops back in to reducing conditions once persulfate is spent
- ORP drop coupled with increase in SRB counts
- ORP and sulfate/sulfide monitoring will indicate potential for anaerobic oxidation

Reference: Lab Study by Dan Cassidy - Western Michigan University

Likely Anaerobic Oxidation following a Klozur[®] Persulfate Application

Sampling Event (Months)	BTEX (ug/L)	Nap (ug/L)	SP (g/L)	ORP (mV)	Sulfide (mg/L)	Sulfate (mg/L)
Baseline	3,000	170	0	-100	0	0
Application			Up to 140	Up to 350		
6	500	30		-120	1.2	8,500
9	300	20		-140	2.8	5,000
12	180	15		-110	0	4,000

- Alkaline activated persulfate application in NYC
- Remedial Goals Met
- Site Closed
- No rebound was observed

Potential Monitoring Program

	Baseline Monitoring	Application Monitoring	Distribution Monitoring	Performance Monitoring
	To set a baseline to compare against	During application	Immediately post application	Typically, 4-10 weeks post application
Contaminants	Х			X
Fraction Organic Carbon, foc	х			x
Persulfate		X	Х	X
Sodium/Potassium/Activator Ions	Х		Х	X
Sulfate	Х		Х	X
Electric Conductivity	Х	X	Х	X
ORP	Х	X	Х	x
рН	Х	Х	Х	X
DOC	Х			Х

- Main Contaminants: BTEX, MTBE, TBA
- Dose applied:
- 2 g Klozur SP per kg soil
- Total porosity (35%): 8.2 g/L persulfate / 6.6 g/L sulfate
- Effective porosity (15%): 19.1 g/L persulfate / 15.5 g/L sulfate
- Results:
- Varied ranging from >99% reduction to no treatment
- Rebound of contaminant concentrations were observed over time
- A comprehensive data review was completed to guide next steps

Example of Monitoring Well with Succesful Sustained Results

Persulfate and sulfate measurements in line with expected values (~20 g/L); geochemical footprint sustained after persulfate spent

→ Benzene and MTBE reduced below detection limit

- -Benzene(ug/L)
- -MTBE (ug/L)
- Persulfate (mg/L)
- ---Sulfate (mg/L)
- Conductivity (mS/cm)

Example of True Rebound (underdose)

Weeks post persulfate application

Dissolved concentrations rebound once persulfate is spent – sorbed mass not fully accounted for

 \rightarrow Increase dosage

- Benzene(ug/L)
- ←MTBE (ug/L)
- Persulfate (mg/L)
- ---Sulfate (mg/L)
- ---Conductivity (mS/cm)

Example of Possible Recontamination

Disappearance of geochemical footprint indicates that untreated GW is migrating into area → Consider expanding treatment zone

-Benzene(ug/L)

----TBA (ug/L)

-Persulfate (g/L)

---Sulfate (g/L)

Conductivity (mS/cm)

Example of Unsuccesful Application

No response in sulfate / EC – minor persulfate recording (1 g/L) after 2 weeks

→ Consider tighter grid to improve distribution

- Benzene(ug/L)
- -MTBE (ug/L)
- -Persulfate (mg/L)
- ---Sulfate (mg/L)
- Conductivity (mS/cm)

Some things to consider..

- Establishing contact:
 - Preferential pathways isolate target intervals (injection)
 - Injection volumes vs. target ROI & effective porosity
 - Review feasible application strategies. Is soil mixing an option?
 - Consider reagent distribution properties and longevity
 - Klozur SP vs. Klozur KP
- Consider flux and residence time!
 - Location of monitoring locations relative grid

Dosing:

- Consider sorbed and non-target demand

Successful *In Situ* remediation requires:

Sufficient <u>dose</u> of reagents to <u>contact</u> contaminants over a sufficient <u>time</u> period

- Geochemical analyses is helpful to gain a better understanding of:
 - Application: Persulfate distribution, longevity & residence time
 - Site: Flow paths, flow velocities, potential for upgradient sources, source zones
- This detailed analysis allows modifying the remedial action plan appropriately for the next phase if needed.

Parameters to Monitor:

- Residual persulfate
- Geochemical parameters (conductivity, ORP, and pH)
- Sodium / potassium and sulfate
 - Common cations and anion
- Dissolved organic carbon
- Total organic carbon on soil

Thank You! Questions?

Josephine Molin

Technology Applications Manager, ISCO Evonik Corporation E. josephine.molin@evonik.com T. +1 773 991 9615

Evonik Soil & Groundwater Remediation remediation@evonik.com www.evonik.com/remediation

