

Monitoring Programs for Klozur[®] Persulfate Applications: Information Needed Before, During and After an Application

> Brant A. Smith P.E., Ph.D. April 14, 2016

Field-Proven Portfolio of Remediation Technologies Based on Sound Science

In Situ Chemical Oxidation

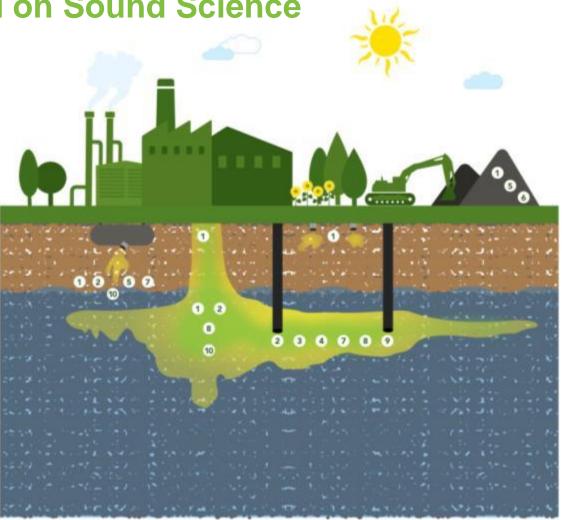
- 1. Klozur® persulfate
- 2. Klozur® CR

In Situ Chemical Reduction

- 3. EHC® Reagent
- 4. EHC® Liquid
- 5. Daramend® Reagent

Aerobic Bioremediation

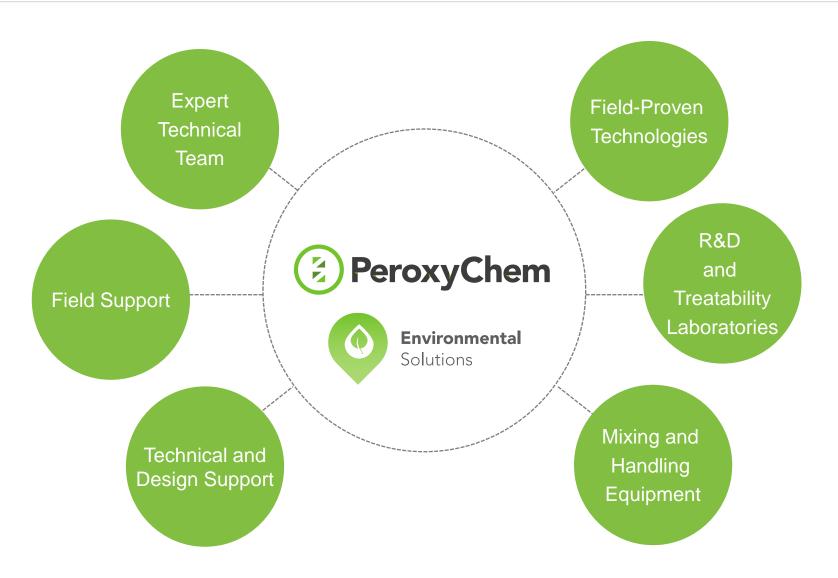
- 6. Terramend® Reagent
- 7. PermeOx® Ultra


Immobilization/Stabilization

8. EHC® Metals and MetaFix® Reagent

Enhanced Reductive Dechlorination 9. ELS™ Microemulsion

NAPL Stabilization/Mass Flux Reduction


10. ISGS™ Technology

Environmental

Solutions

PeroxyChem

Presentation Outline

Klozur Persulfate

Environmental

Solutions

- Monitoring Programs

 Science and Technologies
 - Prior to Field Applications
 - Field Applications
 - Lessons Learned
- Conclusions

KLOZUR PERSULFATE

Introduction to Klozur[®] Persulfate

Klozur[®] Persulfate is:

Environmental

Solutions

- Environmental grade sodium persulfate:
 - A strong oxidant used for the destruction of contaminants in soil and groundwater
 - Highly soluble in water (significant oxidant mass is smaller volumes)
- Aggressive and fast acting chemistry with extended subsurface lifetime (weeks to months) and little to no heat or gas evolution
- Applicable across a broad range of organic contaminants when properly activated

Theoretical solubility of more than 500 g/L. Injection concentrations of 50 to 250 g/L.

6

Radical Formation Upon Activation

- Kinetically faster reacting radicals that are:
 - More powerful oxidants
 (SO₄• and OH•) than
 persulfate itself
 - Reductants ($O_2 \bullet^-$)
 - Nucleophiles $(O_2 \bullet^- \text{ and } HO_2^-)$

Oxidant	Standard Reduction Potential (V)	Reference	
Hydroxyl radical (OH•)	2.59	Siegrist et al.	
Sulfate radical (SO ₄ • ⁻)	2.43	Siegrist et al.	
Ozone	2.07	Siegrist et al.	
Persulfate anion	2.01	Siegrist et al.	
Hydrogen Peroxide	1.78	Siegrist et al.	
Permanganate	1.68	Siegrist et al.	
Chlorine (HOCl)	1.48	CRC (76th Ed)	
Oxygen	1.23	CRC (76th Ed)	
Oxygen	0.82	Eweis (1998)	
Fe (III) reduction	0.77	CRC (76th Ed)	
Nitrate reduction	0.36	Eweis (1998)	
Sulfate reduction	-0.22	Eweis (1998)	
Superoxide (O₂•⁻)	-0.33	Siegrist et al.	
ZVI	-0.45	CRC (76th Ed)	

Current Activators

- Well suited for suited for most applications
- Less corrosion on carbon steel
- Reductants, oxidants and nucleophiles
- Iron-Chelate Activated Persulfate
 - Chlorinated ethenes and hydrocarbons
 - Oxidative pathway
- Heat
 - Complex sites
 - Polishing step after thermal treatment
 - Reductants, oxidants and nucleophiles
- Hydrogen Peroxide
 - Sites that benefit from vigorous reaction with both hydrogen peroxide and sodium persulfate
 - Reductants, oxidants and nucleophiles

Estimated Activator Usage

Environmental

Solutions

- high pH
- peroxide
- Fe

heat

Compounds Degraded by ISCO

Examples of Contaminants Destroyed by Klozur Persulfate

Chlorinated Solvents

Environmental

Solutions

PCE, TCE, DCE TCA, DCA Vinyl chloride Carbon tetrachloride Chloroform Chloroethane Chloromethane Dichloropropane Trichloropropane Methylene chloride

Others

Carbon disulfide Aniline 1,4-Dioxane

TPH BTEX GRO DRO ORO creosote

Oxygenates MTBE TBA

Perflourinated

Freon PFOS PFOA PFBA

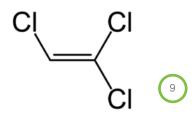
Chlorobenzenes

Chlorobenzene Dichlorobenzene Trichlorobenzene

Phenols

Phenol Chlorophenols Nitrophenols

PAHs


Anthracene Benzopyrene Styrene Naphthalene Pyrene Chrysene Trimethylbenzene

Pesticides

DDT Chlordane Heptachlor Lindane Toxaphene MCPA Bromoxynil

Energetics

Trinitrotoluene (TNT) Dinitrotoluene (DNT) RDX

SCIENCE AND TECHNOLOGIES

Site Equilibrium

- Various contaminant phases are usually in equilibrium:
 - Groundwater
 - Soil

Environmental

Solutions

- Non-Aqueous Phase Liquids (NAPLs)
- Crystalline solids
- Soil Vapor

• Soil and Groundwater:

 $Kd = Koc * foc = \frac{Conc \text{ on Soil}}{Conc \text{ in } GW}$

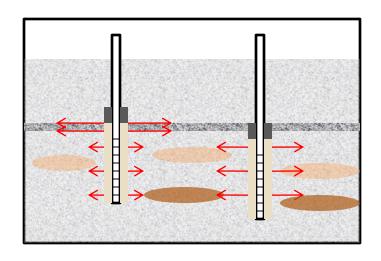
- Where:
 - K_d = Soil partitioning coefficient
 - K_{oc} = Organic carbon partitioning coefficient
 - f_{oc} = Fraction organic carbon in soils

Common Monitoring Technologies

Groundwater samples

• Soil samples

- High Resolution Site Characterization (HRSC) technologies
 - Membrane Interface Probe (MIP)
 - Luminance technologies



Groundwater Sampling

- Groundwater contamination usually in equilibrium with soil and, if present, NAPL
- Represents:
 - Up gradient conditions
 - Average or composite of screen interval
- Concentrations limited by theoretical solubility
 - Partitioning does not estimate equilibrium above solubility
- Common Methods
 - Purge
 - Low flow
 - Snap
 - Diffusion bag

Soil Sampling

- Higher K_{oc}, more mass usually on soil
- Prone to variability

Environmental

Solutions

- Collection method
- Types of Soil Samples – Grab
 - Composite

Contaminant	GW (mg/L)	Foc	Кос	Soil (mg/Kg)	Percent (%)	
					GW	Soil
VC	10	0.005	2.5	0.1	94%	6%
DCE	10	0.005	49	2.5	45%	55%
TCE	10	0.005	94	4.7	30%	70%
PCE	10	0.005	265	13.3	13%	87%
Notes:	Dry bulk density 110 lbs/ft3					

Dry bulk density 110 lbs/ft3 Porosity 0.35

Contonionat	ontaminant GW (mg/L) Foc Koc	-	Kaa	Soil	Percent (%)	
Contaminant		КОС	(mg/Kg)	GW	Soil	
VC	10	0.0005	2.5	0.0	99%	1%
DCE	10	0.0005	49	0.2	89%	11%
TCE	10	0.0005	94	0.5	81%	19%
PCE	10	0.0005	265	1.3	60%	40%
Notes: Dry bulk density 110 lbs/ft3						

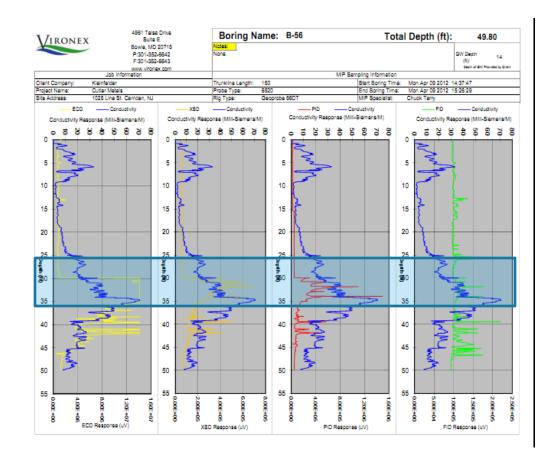
Dry bulk density 110 lbs/ft3

Porosity 0.35

Solutions High Resolution Site Characterization (HRSC)

- Probes typically mounted typically to direct push rods
 - Membrane interface probes (MIP): PID, ECD,
 XSD, FID, conductivity, and others
 - Laser Induced Fluorescence (LIF)
- Allows for a rapid indirect assessment of the site
 - 100-400 linear ft per day

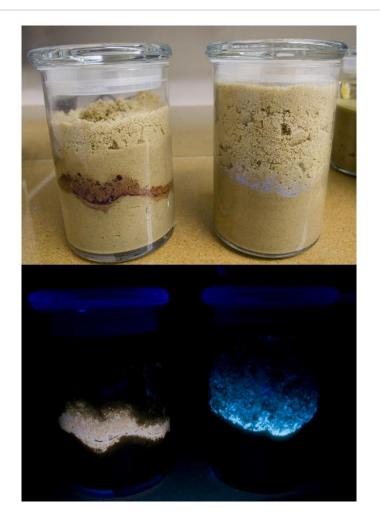
EC Dipol


MIP Membrane

MIP Data

- Vertical site data
- Multiple points allow for horizontal evaluation
- Slower push rate results in highest sensitivity

Courtesy of Cascade



 Different frequency of lasers cause different petroleum hydrocarbon NAPLs to fluoresce.

Environmental

Solutions

- Detectors measure the magnitude of the fluorescence
- Output looks similar to MIP

MONITORING PROGRAM

Monitoring Program

- Used to develop critical data at different steps in the remedial process:
 - Prior to a Field Application:
 - Conceptual Site Model (CSM)
 - Application Design
 - Field Application
 - Baseline
 - Application
 - Post-Application

Data Requirements

• Different data required at each step

Environmental

Solutions

 Monitoring program usually set up to gather data to meet specific objectives

Common Objectives

- Conceptual Site Model
 - Contaminant distribution
 - Site geology, hydrology and general site characteristics
- Klozur Field Application Design
 - Key design parameters

- Performance Monitoring
 - Progress toward remedial goals
 - Assessing effectiveness of ISCO application
- Application Monitoring
 - Understanding,
 documenting, and
 optimizing application
 event

CONCEPTUAL SITE MODEL AND APPLICATION DESIGN

PRIOR TO A FIELD APPLICATION:

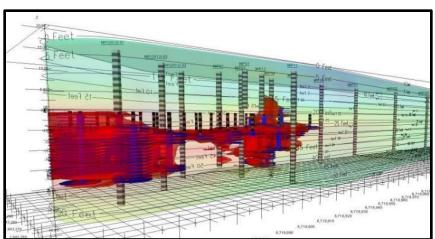
Conceptual Site Model

 First step in remedial approach

Environmental

Solutions

- Common Objectives:
 - Understand site characteristics
 - Contaminant
 - Site geology
 - Hydrology
 - Remedial goals
 - Site conditions and context
 - More detailed data, the better for remedial design


- Additional Considerations:
 - Be able to assess remedial alternatives
 - Oxidative vs. reductive treatment pathway
 - Concentration dependent treatment
 - Have sufficient data for design
 - Minimize need for additional (Data Gap) investigation

Conceptual Site Model – Typical Parameters

- Contaminant Distribution Across Site:
 - Type(s)
 - Phase(s)
 - Concentrations in each phase across the site (g/L, mg/L and mass of NAPL)

Considerations:

 Need to know contaminant type, mass, and phase to understand how to establish contact and estimate necessary mass of oxidant

Conceptual Site Model-Typical Parameters

- Vertical and horizontal extent:
 - Soil types and characteristics
 - Hydraulic conductivity
- Groundwater:
 - Velocity
 - Direction
 - Potential for seasonal variations
 - Geochemistry
 - DO, ORP, conductivity, and pH
 - Types and quantities of metals

Considerations:

- Soil conductivity and heterogeneity can effect ability to establish contact
- Helps in placement of injection locations (vertical interval)
- Groundwater velocity and direction impacts injection event and monitoring

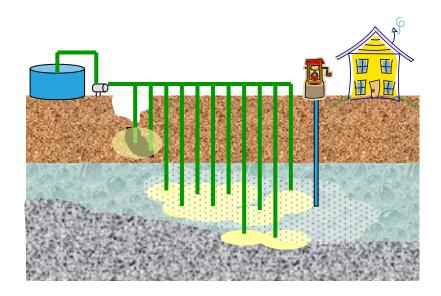
Conceptual Site Model-Typical Parameters

- General site characteristics
 - Surface features
 - Accessibility
 - Sensitive receptors
- Final and interim remedial goals

- Considerations:
 - Staging area
 - Equipment access
- Remedial goals are a key consideration in technology selection and design

Key to Success for Klozur Field Applications

- Highly efficient reactions are known to take place on the laboratory scale
 - 100% contact between ISCO and contamination



• Scale up to the field:

ISCO works by establishing contact between a sufficient mass of activated oxidant with the contaminant mass in the subsurface.

Solutions Klozur Persulfate Application Design Parameters

- Data typically needed for an ISCO Design
- Common Objectives:
 - Have data needed to develop an field application design
 - Compare against other technologies

Data Needed for Design: Oxidant Demand

 $[(CM_{Soil} + CM_{GW} + CM_{NAPL}) \times Ratio + SOD * Soil Mass] \times S.F.$

- Target Volume
 - Well defined/refined target area
- Contaminant
 - Groundwater concentration
 - \circ Soil concentration
 - o NAPL
- Soil characteristics:
 - o Soil density
 - o Porosity
 - \circ Foc
- Bench tests
 - Soil oxidant demand (SOD)
 - Base buffering capacity (BBC)

S.F. = Safety Factor CM = Contaminant Mass

Considerations:

- Refined target volume can be used to optimize oxidant demand
- Bench scale tests are used to provide critical design parameters
- Accurate soil values vs assumptions can make significant difference

Data Needed for Design: Establishing Contact

- Direct Injection- Subsurface Conditions:
 - Hydraulic conductivity
 - Groundwater flow (direction and velocity)
 - Soil type(s)
 - Effective porosity
 - Type and degree of soil heterogeneity
 - Contaminant vs. soil type distribution
- In Situ Mixing
 - Soil type(s)
 - Type and degree of soil heterogeneity

- Direct Injection Considerations:
 - Push reagents into formation to establish contact
 - Anticipated injection rate
 - Injection location screen placement
 - Consider percent of effective pore volume in design
- In Situ Soil Mixing Considerations:
 - Dewatering following application
 - Blended soil characteristics

Sequence of Monitoring Events

• Optimize monitoring

Environmental

Solutions

- Focus in on refining target area
- Collect design data while developing and refining CSM

- Optimized Sequence:
 - Widespread soil and gw samples
 - HRSC
 - Focused soil and GW samples from expected target area
 - Monitoring wells screened in target interval
 - Design data

PERFORMANCE AND APPLICATION MONITORING

FIELD APPLICATIONS:

Performance Monitoring

• What is it:

Environmental

Solutions

 Baseline and postapplication monitoring

- Typical objectives:
 - Monitoring to assess the effectiveness of the application
 - Progress toward remedial goals

Courtesy of XDD and NAVFAC

34

Performance Monitoring: Typical Parameters

- Full scale or Pilot Test
- Evaluative/Iterative approach
 - Monitor between events to optimize multiple applications
- Parameters to be evaluated before and after application to be selected based upon how a site is to be evaluated
 - Assess effectiveness of Application
 - Progress toward remedial goals

- Typical Parameters:
 - Groundwater
 - Contaminant(s)
 - Geochemical (Dissolved oxygen, ORP, conductivity, pH, temperature, etc)
 - Residual Oxidant
 - Others (metals)
 - Soil
 - Contaminant(s)
 - *f*_{oc}
 - Residual NAPL
 - MIP/HRSC

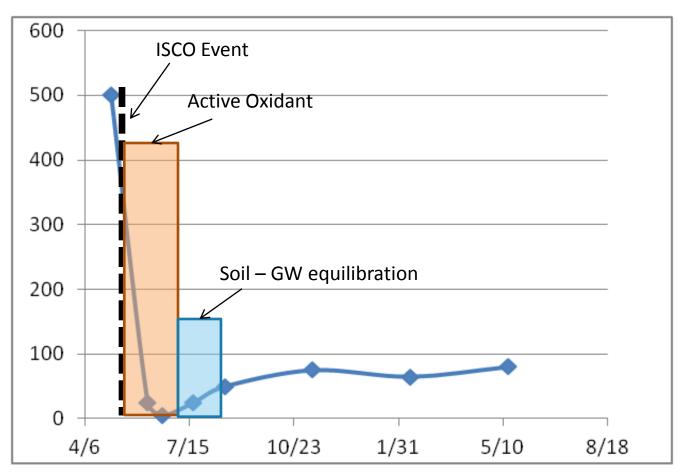
 $Kd = Koc * foc = \frac{Conc \text{ on } Soil}{Conc \text{ in } GW}$

Performance Monitoring:

Frequency

- Baseline:
 - Groundwater:
 - Within 1 month prior of injection typical
 - Multiple baseline events would help identify trends
 - Soils
 - Typically with well installation

Remedial goals are often associated with groundwater; however, assessing the effectiveness if an application solely on soil based data (sampling and/or MIP/HRSC) may be necessary


- Post Application
 - Groundwater:
 - Dependent on goals
 - Multiple events would help assess equilibrium
 - If single event: 2-3 months typical for contaminants
 - Potentially longer for geochemistry and metals (if applicable)
 - Soils
 - Once majority of oxidant is consumed

Performance Monitoring: Frequency

Hypothetical Event

Performance Monitoring:

Pilot Tests

- Pilot Tests/Design Optimization
 - Subset of larger area
 - First application in small area
- Objectives of Pilot Tests:
 - Confirm treatment
 - Evaluate design parameters

- Critical Field Parameters
 - Treatment efficacy
 - Injection rate
 - Injection pressure
 - Distribution of reagents
 - Active oxidant
 - Inactive oxidant
 - Potential issues
- Monitoring program
 - Typically more extensive than full scale
 - Intended to monitor treatment efficacy and field parameters

Application Monitoring

- What is it:
 - Monitoring during the field event/application
- Typical objectives:
 - Control system during application
 - Ability to describe field event (historical record)
 - Confirm design assumptions
 - Understand the distribution of the reagents

Application Monitoring: Typical Parameters

- Batching and Injection System:
 - Batching records (volume and mass)
 - Concentrations of stock solution feeds
 - Flow rates and pressures of stock solution feeds
 - Geochemical parameters and oxidant concentration of injection solution
- Injection Location/Wells:
 - Injection rate for each injection location
 - Injection pressure at wellhead

- Mass of Klozur and other reagents applied at each interval and location
- Monitoring Wells
 - Field measurement of geochemical parameters
 - Residual oxidant of injection solution
- Onsite Occurrences of Note
 - Surfacing of reagents
 - Start and stop times
 - Delays
 - Inclement weather

Application Monitoring: Frequency

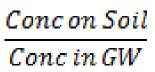
- Monitor as needed
 - Batching System: Each Batch
 - Injection system parameters: Multiple times a day
 - Monitoring wells: Multiple times per event
 - Occurrences of Note: As necessary

Data Assessment

- Active oxidant
 - Contains activated Klozur persulfate
 - Presence of persulfate confirmed with field test kits
- Inactive reagent solution
 - Does not contain activated
 Klozur persulfate
 - Conductivity or sodium used as indicator

- Peroxychem Klozur Field Test Kits
 - Calibrated for typical Klozur application concentrations (1 g/L to 100 g/L)
 - Reverse titration minimizes potential interferences

LESSONS LEARNED


- Klozur oxidizes naturally ulletoccurring organics
 - Component of SOD
- Foc typically decreases by a significant amount
 - Can have significant reductions in contaminant mass with little to no change in GW concentrations
- Key:

Environmental

Solutions

- ISCO reduces contaminant mass
- Understand all relevant phases and changes in $f_{\rm oc}$

Kd = Koc * foc =

Contaminant	GW	Foc	Кос	Soil (mg/Kg)	Total Mass (mg)	Percent (%)		
	(mg/L)	FOC				Reduction	GW	Soil
VC	10	0.005	2.5	0.1	105		94%	6%
DCE	10	0.005	49	2.5	221		45%	55%
TCE	10	0.005	94	4.7	334		30%	70%
PCE	10	0.005	265	13.3	760		13%	87%
Notes: Dry bulk density 110 lbs/ft3								

Dry bulk density 110 lbs/ft

Porosity	0.35	

	GW _		Kaa	Soil	Total	Percent (%)		
Contaminant	(mg/L)	Foc	Кос	(mg/Kg)	Mass (mg)	Reduction	GW	Soil
VC	10	0.0005	2.5	0.0	100	5%	99%	1%
DCE	10	0.0005	49	0.2	111	50%	89%	11%
TCE	10	0.0005	94	0.5	123	63%	81%	19%
PCE	10	0.0005	265	1.3	165	78%	60%	40%
Notes:	Dry bulk der	nsity 110 lbs/f	t3					

Porosity 0.35

GW Foc		Кос	Soil	Total Mass	Percent (%)		
(mg/L)			(mg/Kg)	(mg)	Reduction	GW	Soil
4	0.0005	2.5	0.0	40	62%	99%	1%
4	0.0005	49	0.1	45	80%	89%	11%
4	0.0005	94	0.2	49	85%	81%	19%
4	0.0005	265	0.5	66	91%	60%	40%
	(mg/L) 4 4 4	(mg/L) Foc 4 0.0005 4 0.0005 4 0.0005 4 0.0005	Foc Koc 4 0.0005 2.5 4 0.0005 49 4 0.0005 94	Koc Koc (mg/Kg) 4 0.0005 2.5 0.0 4 0.0005 49 0.1 4 0.0005 94 0.2	GW (mg/L) Foc Koc Soil (mg/Kg) Mass (mg) 4 0.0005 2.5 0.0 40 4 0.0005 49 0.1 45 4 0.0005 94 0.2 49	GW (mg/L) Foc Koc Soil (mg/Kg) Mass (mg) Per Mass (mg) 4 0.0005 2.5 0.0 40 62% 4 0.0005 49 0.1 45 80% 4 0.0005 94 0.2 49 85%	GW (mg/L) Foc Koc Soil (mg/Kg) Mass (mg) Mass (mg) Mass Reduction Reduction GW 4 0.0005 2.5 0.0 40 62% 99% 4 0.0005 49 0.1 45 80% 89% 4 0.0005 94 0.2 49 85% 81%

Dry bulk density 110 lbs/ft3

 Well screens are a composite/average of screen interval

Environmental

Solutions

 To assess Klozur application, best if same or subset of application target interval

> Application/ Target Interval

Can still favor
 preferential pathways

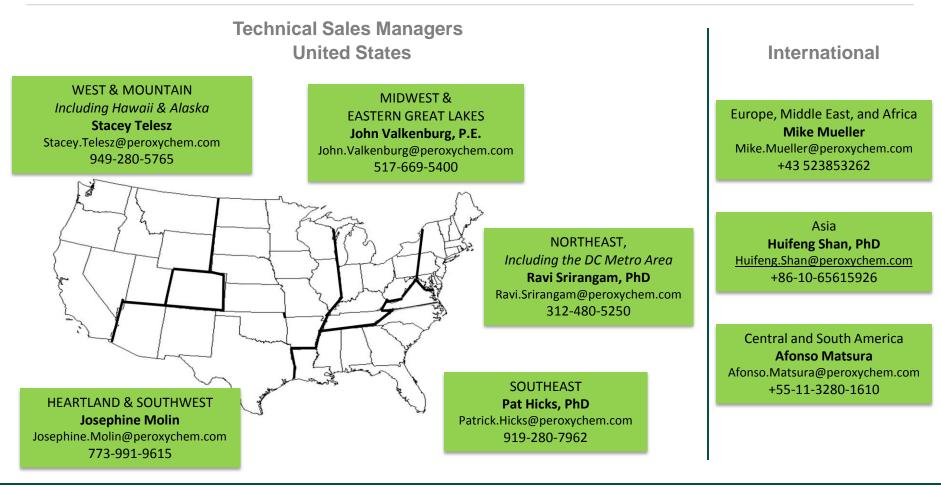
Groundwater Velocity

Environmental

Solutions

 Groundwater monitoring wells represent soil mass some distance up gradient of well Contaminated Can be recontaminated Area from up gradient sources Sampling schedule vs GW velocity **Pilot Test** MW location Area Up gradient contamination

SUMMARY AND CONCLUSIONS


Summary and Conclusions

- Monitoring Program is an important aspect of a remedial approach
- Program should be carefully considered to fit site needs
- Having accurate and refined data will help with accurate design
- Klozur persulfate is a mass reduction technology and it is best to understand changes in all contaminant phases to assess effectiveness
- Reference: https://clu-in.org/characterization/

Thank You - Questions

Technical Application Managers

Dan Leigh, P.G., CH.G. ERD and Federal Programs Daniel.Leigh@peroxychem.com 925-984-9121

Alan Seech, PhD

Metals, ISCR, and Laboratory Alan.Seech@peroxychem.com 949-388-7065

Fayaz Lakhwala, PhD

ISCR Fayaz.Lakhwala@peroxychem.com 908-688-8543

Brant Smith, PhD Chemical Oxidation Brant.Smith@peroxychem.com 603-793-1291