Enhanced Aerobic Bioremediation of Soils Containing PAHs, PCP, Phthalates, and Petroleum Hydrocarbons

Alan Seech, Ph.D. Senior Manager, Technology Applications

2 February 2022 | Evonik Active Oxygens

Field-Proven Portfolio of Remediation Technologies

Chemical Oxidation

- Klozur[®] Persulfate Portfolio
 - Klozur[®] SP
 - Klozur[®] KP
 - Klozur® One
 - Klozur[®] CR
- Hydrogen Peroxide

Aerobic Bioremediation

- Terramend[®] Reagent
- PermeOx® Ultra
- PermeOx® Ultra Granular

Metals Remediation

• MetaFix[®] Reagents

Chemical Reduction

- EHC[®] ISCR Portfolio
 - EHC[®] Reagent
 - EHC[®] Liquid
 - EHC[®] Plus
- Daramend[®] Reagent

Enhanced Reductive Dechlorination

- ELS[®] Microemulsion
- ELS[®] Liquid Concentrate
- ELS[®] Dry Concentrate

BioGeoChemical

GeoForm[®] Reagents

Our Presenter

Alan Seech, Ph.D. Sr. Technology Applications Manager Evonik Active Oxygens Soil & Groundwater Remediation Alan.Seech@evonik.com

- M.Sc. and Ph.D. degrees in Soil Chemistry and Environmental Microbiology at the University of Guelph in Canada
- Expertise in soil chemistry and reductive remediation techniques including pesticides, energetics, and metals
- 30 years of industry experience and product development, including Daramend[®], Terramend[®], EHC[®], and MetaFix[®] technology portfolios
- Numerous patents, peer reviewed technical publications, and conference presentations
- Based in southern California

- 1. Applicability
- 2. Terramend® Reagents
 - ✓ Composition of Terramend® Carbon & Terramend® Inorganic reagents
 - ✓ Compare and Contrast with traditional fertilizer-based approach
 - ✓ Microbiology & Biochemistry during soil treatment
- 3. Bench-scale treatability approach and results
- 4. Project Snapshots (very brief case studies)
- 5. Questions & Answers

Approaches to Aerobic Soil Bioremediation

- Traditional focus has been on supplying adequate inorganic nitrogen and phosphorus to support biodegradation of target hydrocarbons, adjusting soil water content, and soil mixing for aeration.
- Generally supplied in the form of commercial/agricultural fertilizer
- Target an "optimized" C:N:P ratio based on an estimate of bioavailable carbon including target compounds and native organic matter
- Commonly target C:N:P at 120:10:1 molar ratio
- This approach often fails because inorganic nutrients are used very quickly when bioavailable and are also lost through wasteful processes including luxury consumption, denitrification, and precipitation.
- This approach also fails to address the issue of low bioavailability of water in hydrophobic soils and the acute microbial toxicity created by some contaminants (e.g., PCP, Lindane)
- We use a different approach that is based on supplying nutrients, increasing bioavailable water, and overcoming acute microbial toxicity with our Terramend family of soil amendments.

Terramend[®] Carbon, Terramend[®] Inorganic, and Daramend[®] Reagents

Attribute	Terramend [®] Carbon	Terramend [®] Inorganic	Daramend®	Daramend [®] Plus
High Surface Area Hydrophilic Plant Fiber	\checkmark	\checkmark	\checkmark	\checkmark
Slow-release Organic Carbon & Nutrients (N, P, S)	\checkmark	\checkmark	-	-
Rapid-release Organic Carbon & Nutrients (N, P, S)	-	-	\checkmark	\checkmark
Inorganic Nitrogen & Phosphorus	-	\checkmark	-	-
Emulsifying Agent	\checkmark	\checkmark	\checkmark	\checkmark
pH Balanced	\checkmark	\checkmark	\checkmark	\checkmark
Microscale ZVI			\checkmark	\checkmark
Activated Carbon				\checkmark

Rapid & Slow-release Organic Forms of Carbon, Nitrogen & Phosphorus in Terramend[®] Reagents

Carbon & Nutrients in Terramend® Reagents

- Between 4% and 10% in rapidly available forms including sugars, polysaccharides, and amino acids.
- More slowly-released forms including hemicellulose
 and amino acid-oligosaccharide structures
- Provides a range of rapidly and slowly released carbon and nutrients to support a variety of aerobic bioremediation applications
- Natural, sustainable, optimized food source for soil microorganisms

Terramend[®] Added

Terramend[®] Hydrated

Nutrients Released

11 | 2 February 2022 | Aerobic Bioremediation with Terramend® Reagents

Bacteria Grow

Contaminants Destroyed

In Situ Terramend Treatment of PAHs, PCP, and Mineral Oil Industrial Wood Preserving Site

Ex Situ Treatment of Chlorinated Phenols Chemical Manufacturing Site

In Situ Treatment of Herbicides and Chlorinated Pesticides Former Agricultural Site

Windrow Treatment of Petroleum Hydrocarbons and PAHs

Bench-scale Treatability Testing

 ✓ Objectives
 ✓ Methodology
 ✓ Results for PCP, Lindane, and Petroleum Hydrocarbons

Bench-scale Treatability Testing for PCP in Soil Mineralization of ¹⁴C-PCP to ¹⁴C-CO₂

- Documents complete biodegradation of PCP
- Compares performance of reagents & dosages
- Supported by traditional extraction & GC analysis

- Terramend[®] Carbon at 5% w/w performed best
- Order of performance same as increase in soil WHC
- Hydrophobic soil with acutely toxic COI
- Poor response to both N+P nutrient treatments

Bench-scale Treatability Testing for PCP in Soil Total Extractable Chlorinated Phenols

Initial ■ 81 days ■ 151 days

- Very good agreement between mineralization of ¹⁴C-PCP and reduction in total extractable CPs
- ✓ Treatments that supported greatest conversion of radiolabeled PCP to CO₂ also achieved lowest residual CP concentrations
- Higher dose of slowly-released Terramend Carbon provided large increase in soil WHC without turning soil anaerobic
- More rapidly-released Terramend Inorganic at the higher dose may have resulted in less oxic conditions in this soil
- ✓ Inorganic N+P was ineffective regardless of dosage

Bench-scale Treatability Testing for Lindane in Soil Mineralization of ¹⁴C-Lindane to ¹⁴C-CO₂

Radioisotope Fate Study

- Industrial soil from Lindane manufacturing site
- Tracked conversion of ¹⁴C-γ-hexachlorocyclohexane (Lindane) to ¹⁴C-CO₂ in glass microcosms
- Compared untreated control to soil amended with Terramend[®] Carbon (3.0%) or Daramend[®] (4.0%)
- Literature says half life of Lindane should be shorter under anaerobic conditions
- Our results differed as we found more rapid and more substantial biodegradation of Lindane under optimized aerobic conditions than under highly reduced anaerobic conditions (ORP = -450 mV)

Bench-scale Treatability Testing for Lindane in Soil Total Extractable Lindane

- Total extractable Lindane by EPA 3540 and 8081B
- Total extractable Lindane was in good agreement with results from mineralization of added ¹⁴C-Lindane to CO₂
- Both reductive dechlorination (Daramend[®]) and aerobic bioremediation (Terramend[®] Carbon) were effective in degradation of Lindane in this soil
- Isolates of Sphingomonas japonicum and several other bacteria have been shown to use Lindane as sole source of carbon and energy through aerobic dechlorination and hydroxylation and ring cleavage
- Extracellular enzymes produced by soil fungi have also been shown to degrade Lindane

Bench-scale Treatability Testing

Terramend[®] Treatment of Stabilized Drill Cuttings

- Very high TPH drill cuttings from oil extraction
- Initial treatment was stabilization with wood much followed by aerobic tillage; however, this approach did not achieve the desired degree of TPH reduction
- The as-received drill cuttings (already treated with wood mulch at 10% w/w) were subjected to 141 days of Terramend treatment at RT with weekly aeration by mixing
- Sharp difference in response to Terramend Inorganic vs Terramend Carbon.
- Most effective treatment was the higher dosage of Terramend Inorganic
- TPH was reduced by 91% in response to this treatment

Project Snapshots

- 1. Terramend[®] Inorganic Treatment of Aged Hydraulic Oil and Diesel Fuel
- 2. Terramend[®] Carbon Treatment of Bis(2-ethylhexyl) Phthalate
- 3. Terramend[®] Carbon Treatment of PAHs, PCP, and Mineral Oil TPH
- 4. Terramend[®] Carbon Treatment of MGP PAHs
- 5. In Situ Daramend[®] Treatment of Chlorinated Pesticides

Project Snapshot 1

Terramend[®] Inorganic Ex Situ Treatment of Hydraulic Oil & Diesel Fuel

- Midwest Industrial site
- Former agricultural equipment repair facility
- Approximately 4,400 tons of soil treated on-site

Bioremediation of Hydraulic Oil + Diesel Fuel Contaminated Soil with Terramend[®] Inorganic Reagent

On-Site Treatment of Industrial Soil

- 4,400 tons treated in HDPE lined biocell with soil in a layer of 24" (60 cm) thickness
- Hydraulic oil and diesel fuel (C₁₆ C₃₅)
- Calcareous sandy loam, neutral pH, low organic matter
- Terramend® Inorganic dosage of 3.0% w/w in split application (2.0% at start and 1.0% on day 90)
- Soil water content maintained near 60% WHC
- Aeration by tillage twice weekly for the first month, with tillage reduced to weekly thereafter
- Each data point represents the mean of 5 composite samples with each composite created by blending 10 grab samples from full depth of treatment

Project Snapshot 2

Terramend[®] Carbon On-Site Treatment of Phthalates in Excavated Soil

- Industrial site in eastern New Jersey
- Former chemical industry facility
- Approximately 600 tons of soil treated on-site
- Two 300-ton batches in biocell

Bench-scale Treatability Testing Results

Bis(2-ethylhexyl) phthalate in New Jersey Chemical Industry Soil

■ Initial ■ 30 days ■ 130 days

Interpretation of Results

- Low solubility of phthalate makes it relatively slow to degrade
- Terramend[®] Inorganic at 2.0% w/w and Terramend[®] Carbon at 3.0% w/w.
- Longer lasting reagent (Terramend[®] Carbon) was better suited
- High native organic matter and fine-grained texture made it more difficult to maintain aerobic conditions in soil treated with Terramend® Inorganic
- Possible that native bacteria produced more biosurfactant under lower nutrient status in soil with Terramend® Carbon
- Visible fungal growth on soil with Terramend[®] Carbon

Terramend® Inorganic Treatment of Bis(2-ethylhexyl) Phthalate

Ex situ On-Site Treatment in New Jersey

- Ex situ soil treatment on-site in New Jersey
- Terramend formulation and dosage established during bench-scale treatability testing
- Soil moisture set to 60% WHC by spray irrigation system
- Reagent dosage of 3.0% w/w for both
- Slowly released carbon and nutrients was proven more effective
- Visible fungal growth on soil treated with Terramend[®] Carbon

Project Snapshot 3

Terramend[®] Carbon

Ex Situ Treatment of PAHs, PCP, and Petroleum Hydrocarbons

- Industrial Wood Preserving Site
- On-site treatment of excavated soil in HDPE-lined cell
- 1,200 tons/year in batch system

Ex Situ Bioremediation of Wood Treatment Soil with Terramend® Carbon

- Industrial wood preserving site in operation since 1950
- Pressure treatment using creosote and PCP in mineral oil
- Batch treatment of 1,200 tons/year over three years
- Excavated soil in HDPE-linde bioremediation cell
- Covered to extend treatment season in cool climate area
- First batch included monitoring of untreated control soil simultaneous with Terramend Carbon treated soil
- Also treated 4,800 tons of lightly impacted soil in situ (0 – 24" bgs)

Treatment of PAHs and Petroleum Hydrocarbons

Project Snapshot 4 Terramend[®] Carbon Ex Situ Treatment of PAHs at MGP Site

- Pacific Northwest Manufactured Gas Plant Site
- On-site treatment of excavated soil in biocell

Ex situ Terramend[®] Treatment of PAHs Pacific Northwest MGP Site

Lower MW PAH Compounds

- Pacific Northwest MGP Site
- Excavated soil in HDPE-lined Biocell
- Terramend Carbon application at 4.0% w/w
- Weekly tillage for aeration
- Removal efficiencies of 90% or more for most of the lower molecular weight PAHs

Ex situ Terramend® Treatment of PAHs Pacific Northwest MGP Site

Higher MW PAH Compounds

- Good treatment efficiency on even high molecular weight PAHs
- Lower removal efficiencies than for the lower MW (more soluble) PAHs
- Removal efficiencies between 60% and 85% for most of the higher MW PAHs
- Somewhat lower removal efficiency than for creosote soils
- Possibly related to acute soil toxicity?

Project Snapshot 5

Daramend®

In Situ Treatment of Chlorinated Pesticides

- Former agricultural site for residential development
- In situ treatment of 34 acres (14 hectares)
- About 110,000 tons of soil in total
- Surface soil to a depth of 24" (60 cm)
- Residual metabolites from use of DDT as an insecticide
- Major target compound was DDE

In Situ Treatment of DDE at Former Agricultural Site

Remediation for Residential Development

Achievement of Residential Land Use Criteria

- Treatment of large areas in situ sharply reduces total cost
- Total cost including Daramend, equipment, and labor was less than US\$50,000/acre
- Equivalent to about \$14/ton of treated soil

Terramend® Reagents Summary

- Proven performance on PAHs, chlorinated phenols, phthalates, bunker oil, diesel fuel, and Lindane
- Excellent performance in simultaneous removal of PCP + PAHs + Petroleum Hydrocarbons for wood treatment sites
- ✓ Supported by experienced staff including bench-scale treatability and optimization capability
- Sustainable and economical alternative to off site disposal for many soils, sediments, and even many industrial process wastes
- ✓ Excellent 25-year worldwide track record in many field-scale applications

Available Terramend[®] Case Studies

- ✓ PAHs
- ✓ PCP
- ✓ Bunker Oil
- ✓ Diesel Fuel
- ✓ Phthalates
- ✓ Lindane
- ✓ Wood Preserving Sites
- ✓ MGP sites
- ✓ Lindane

Questions are Welcome!

Alan Seech, Ph.D. Technical Applications Manager Evonik Active Oxygens

E. <u>Alan.Seech@evonik.com</u> T. +1 949-514-1068

Evonik Soil & Groundwater Remediation remediation@evonik.com www.evonik.com/remediation

