

WEBINAR

Design Strategies and Applications Combining ISCO and ISS

May 26th, 2021 10:30AM (EDT) / 7:30AM (PDT) / 4:30PM (CET)

Our presenters:

Vipul Srivastava

Senior Remediation Specialist Burns & McDonnell

Joel Parker

Principal Engineer

Hamp Mathews

& Associates

Brant Smith Technology Director PeroxyChem

Today's Presenters

Vipul Srivastava

Senior Remediation Specialist Burns & McDonnell

Joel Parker

Principal Engineer Hamp Mathews & Associates

Brant Smith, PhD, PE

Technology Director

PeroxyChem

Field-Proven Portfolio of Remediation Technologies Based on Sound Science

Chemical Oxidation

- Klozur[®] Persulfate Portfolio
 - Klozur[®] SP
 - Klozur[®] KP
 - Klozur[®] One
 - Klozur[®] CR
- Hydrogen Peroxide

Chemical Reduction

- EHC ISCR Portfolio
 - <u>E</u>HC[®] Reagent
 - EHC[®] Liquid
 - EHC[®] Plus
- Daramend[®] Reagent
- Zero Valent Iron

Aerobic Bioremediation

- Terramend[®] Reagent
- PermeOx[®] Ultra
- PermeOx[®] Ultra Granular

Metals Remediation

• MetaFix[®] Reagents

Enhanced Reductive Dechlorination

- ELS[®] Microemulsion
- ELS[®] Liquid Concentrate
- ELS[®] Dry Concentrate

• GeoForm[™] Reagents

SAL CA

1 # 1 2 20

Previous ISCO-ISS Webinars

January 2017: Soil Mixing and *In Situ* Stabilization using Klozur Persulfate: Theories, Benefits, and Lessons Learned

Tom Simpkin, Ph.D., P.E./Jacobs Mike Perlmutter, P.E./Jacobs Dan Cassidy, Ph.D., P.E./Western Michigan University Brant Smith, Ph.D., P.E./PeroxyChem

October 2019: Fundamentals of Combining *In Situ* Solidification and Stabilization (ISS) with ISCO Chris Robb, P.E./Geosyntec Brant Smith, Ph.D., P.E./PeroxyChem

http://www.peroxychem.com/remedationwebinars

Safety Share: Chemical Compatibility

- Neutral pH persulfate can be very corrosive to carbon steel
- Persulfate generates acid as it decomposes

Safety Share: Compatible Materials

Chemically compatible equipment needs to be used for all wetted equipment parts or parts that may come in contact with the reagents

- Compatible with persulfate:
 - 304 and 316 stainless steel, PVC, CPVC, polyethylene, Plexiglas®, glass, FRP (fiber reinforced plastic, e.g. Derakane©), Fiberglass specifically vinyl ester resin, Polyester
 - Elastomers:
 - Long term duration: Teflon or PTFE, PVDF, or Gylon[®]
 - Short term duration: EPDM
 - Safety gear: butyl rubber, neoprene
- Corrosion rates increase at higher persulfate concentrations

 Table 4:
 Results for Alkaline Activated Klozur Persulfate Solutions, 20 wt% and 40 g / L at Room

 Temperature After 1 Month Exposure Time

mpy – milli-inches per year; ✓- compatible material, Θ - non-compatible material

Material	20 wt% concentration	40 g / L	Comments
Stainless steels (304L, 316L)	els 🗸		< 1 mpy. No noticeable corrosion over 1 month
Copper Brass	\checkmark	\checkmark	Negligible general corrosion (< 2 mpy). Black film formation observed.
Carbon steel	\checkmark	\checkmark	Negligible general corrosion (< 2 mpy). Isolated rust spots observed

http://www.peroxychem.com/media/131599/peroxychem-klozur-compatible-materials.pdf

Webinar Agenda

- ISCO-ISS Fundamentals
 - Vipul Srivastava

- PeroxyChem Study Results
 - Brant Smith

- ISCO-ISS to Treat a Former Dry Cleaner Site: Kent Cleaners Case Study
 - Joel Parker

Design Strategies and Applications Combining ISCO and ISS: Background and Benefits

Vipul J Srivastava May 26, 2021

Presentation Scope

Combined ISCO/ISS Technology:

- ISCO Technology
- ISS Technology
- Benefits of Combining ISCO/ISS Technology
 - Synergistic Value-added Effects of ISCO and ISS Technologies
 - Overcome Limitations of ISCO and ISS Technologies
 - Application can be Cost-Effective
- Path to a Successful Application
 - Thoughtful Treatability Testing
 - Strategic Remedial Design and Field Implementation

Conclusions

ISCO Technology- Frequently Used Reagent Types- I

- **Sodium persulfate** $(Na_2S_2O_8, S_2O_8^2, SO_4^-)$, Solid
 - Sodium persulfate can be <u>activated</u> by one of the following methods to produce sulfate radical (SO₄-.):
 - <u>Alkaline pH (> 10.5 pH)</u>
 - Peroxide (H_2O_2) Addition
 - Chelated-iron Addition
 - Heat (>35 deg. C) Addition
- Permanganate (MnO₄); Solid
 - Sodium and Potassium Permanganate

Disclaimer: Pictures in this entire presentation are taken from the Internet and/or from other presentations

ISCO Technology- Frequently Used Reagent Types- II

- CHP (catalyzed hydrogen peroxide, formerly called "modified Fenton's", OH-)
 H₂O₂ (H₂O₂, Liquid)
 - Iron (including chelated iron)- Iron can activate to generate OH.
 - o Iron in soil/GW if present in appropriate levels, or
 - o Added iron
- Ozone (O₃, Gas)

- Combination of Reagents such as
 - Persulfate and Peroxide
 - Persulfate and Permanganate
 - Peroxide and Ozone

Disclaimer: Pictures in this entire presentation are taken from the Internet and/or from other presentations

ISCO Technology: Factors Affecting Success

- Appropriate Reagent with Respect to Type of Contaminants
- Reagent <u>Contact</u> with Contaminants

✓ Including contact duration

- Total <u>Amount</u> of Reagent Addition
- ISCO Reagents react and destroy/degrade soluble contaminants faster than those attached to soil or those in non-aqueous phase liquids (NAPL) phases

✓ Due to limitation in rates of solubilization

- Measures of success for ISCO include-
 - Rate and Extent of Contaminant reductions, or
 - Reduction in Contaminant Concentration and Mass

ISCO Technology: Limitations include

- Reagents are often applied as water-based (aqueous) solutions
- Contaminants (PAHs, TPHs, etc.) are often in NAPL phase
- Challenges in efficiently mixing reagents with contaminants
 - Short-lived Duration of Some Reagents/Oxidants (i.e., short half life)
 - Limitation of rates of Dissolution/desorption of contaminants from soil to groundwater
 - ✤ Mass Transfer Challenges
 - Excess Requirement of Reagents when Contaminants are not or less available
 - Contaminants rebounding- requiring multiple cycle of treatments
- Reagents can also be applied using soil mixing equipment
 - Resulting in Swampy/Soupy Site

ISCO Field Application Includes Reagent Injection Using Wells (w/ or w/o Groundwater Recirculation) or Using GeoProbe

Injection Points

Reagents can be delivered in the subsurface through Injection Wells. Groundwater recirculation improves reagent distribution.

Reagent Solution

Direct Push/GeoProbe can also be used to inject reagents in a targeted manner.

 This can be effectively implemented to increase reagent contact with the contaminant mass

Disclaimer: Pictures in this presentation are taken from souces on Internet or other presentations

BURNS

ISCO Can be Implemented Using Soil Mixing Equipment to Improve Reagent Contact with Contaminants

Leaving the Swampy Ground after ISCO with Soil Mixing (See the Picture Above)

Disclaimer: Pictures in this presentation are taken from sources on Internet and/or presentations by others

ISS Technology: Frequently Used Reagents Include-

Typical ISS reagents include-

- Portland Cement
- Slag Cement or Ground Granulated Blast Furnace Slag (GGBFS)
- Bentonite

BURNS MSDONNELL

- Hydrated Lime
- Lime Kiln Dust
- ISS Application at DNAPL sites started primarily in early 1990s
 ISS is one of the most utilized and successful treatments for Source Areas

Disclaimer: Pictures in this presentation are taken from Internet and/or other presentations

ISS Technology: Background

ISS involves mixing of cementitious reagents with subsurface soil to encapsulated contaminants into a solidified mass or monolith

ISS is not intended destroy contaminants

Addition of cementitious reagents to subsurface causes the soil volume to increase (swelling or bulking)

Necessitates excavation of significant soil (vadose and saturated)

 Deep soil-reagent mixing can be achieved with auger mixing in overlapping patterns
 Shallow soil-reagent mixing can be achieved with excavator mixing, rotary drum mixing, etc.

Disclaimer: Pictures in this presentation are taken from sources on Internet and/or presentations by others

ISS Technology Background (contd.)

- Hydraulic conductivity) of treated soil (*monolith*) is much lower than the surrounding soil; thus, groundwater goes "around" the monolith, and <u>not</u> "through" the monolith
 - Contaminant leaching is significantly reduced or eliminated.
- Soil strength improves due to cement addition [as measured by Unconfined Compressive Strength (UCS)]
- Groundwater mounding is generally not a major issue because ISS treatment areas are small relative to large surrounding areas
- Excess sedimentation in groundwater has not been observed except during the initial phases of ISS treatment, but it resolves itself shortly thereafter.

Conceptual Depiction of Groundwater Flow Before and After ISS Treatment

Disclaimer: Picture Taken from 2011 ITRC Document on ISS Technology

ISS Technology: Limitations include

Contaminants are not intended to be degraded

Excess soil excavation (vadose and saturated) to compensate for the increase in volume due to ISS reagent additions

Contaminants are encapsulated in monolith

- Concerns about vapor if contaminants included volatile compounds
- Concerns about long-term durability of monolith
 - Potential leaching of mobile/soluble contaminants

Combined ISCO/ISS Treatment

- In-Situ Chemical Oxidation (or ISCO) using Sodium Persulfate
- In-Situ Solidification/Stabilization (ISS)- using Portland cement or Slag cement, which are alkaline (pH of ~12).

Cements-

- Activate sodium persulfate (alkaline activation) to destroy soluble and rapidly degradable contaminants
- Encapsulate remaining/residual contaminants

Key Publications:

- 1. EPRI. (2013). Bench Scale Study of Integrated Chemical Oxidation Enhanced Bio-Stabilization of MGP Soils
- 2. Cassidy et al. (2015). Journal of Hazardous Materials.
- 3. Srivastava et al. (2016). *Chemosphere*.
- 4. Srivastava et al. (2016). Journal of Chemical Environmental Engineering.

Combined ISCO/ISS Treatment (continued)

Combined <u>ISCO/ISS</u> Overcomes Limitations of ISCO and ISS and Highlights Strengths such as-

- Degrades mobile/soluble (i.e., low MW) contaminants prior to and during early phases of combined treatment
- Encapsulates remaining contaminants
- Improves soil strength (and no swampy land), and
- Reduces hydraulic conductivity to force groundwater to go around the monolith

Advantages/Benefits of Combined ISCO/ISS Treatment

- Reduces contaminant mass by *chemical oxidation*, especially soluble/mobile/degradable contaminants,
- Encapsulates remaining, less mobile contaminants, and
- Combined ISCO/ISS treatment -
 - Minimizes contaminant leaching potential
 - Minimizes vapor intrusion potential after treatment
 - Eliminates or minimizes contaminant rebound problem
- Increases soil strengths for Site Redevelopment (<u>no</u> swampy land)
- Reduces soil excavation requirement due to reductions in total ISS reagent additions (and hence reductions in Bulking or Swelling)

Combined ISCO/ISS Technology can be Implemented with Conventional ISS Equipment

- Combined ISCO/ISS treatment is another remediation approach for certain types of sites, or for specific portions of sites.
- This does not replace the conventional ISS or ISCO technology.

Disclaimer: Pictures in this presentation are taken from sources on Internet and/or presentations by others

BURNS

When and Where Combined ISCO/ISS is Best Suited

Remedial Goals include-

- Reducing the Total Mass of Contaminants
- Minimizing Long-term Leaching Potential of Saturated Zone
- Minimizing the Vapor Intrusion Potential- Important when Redeveloping the Site
- Presence of Downstream Receptors such as a River or a Water Body
- Specific Areas with Abundance of Low-Molecular Contaminants (such as Mobile and/or Easily Water-Soluble Contaminants)

Approach to Evaluating and Implementing ISCO/ISS

Conduct treatability studies with site soils

- Combined ISCO/ISS using different combinations of ISCO and ISS reagents concentrations
- ISCO alone (optional)
- ISS alone (optional)
- Conduct pilot tests utilizing ISS field equipment
 - Small plots (e.g., 25' x 25')
 - Use full-scale equipment
- Implement full-scale remediation
 - Grid cell pattern (e.g., 50'x50') across the contaminated site
 - Select reagent mixes for each cell

Treatability Studies/Tests

- What ratio of ISCO reagent to ISS reagents?
 - Ratios of ISCO:ISS reagents between
 1:3 and 1:5 works well for most soils
 - Greater the ISCO reagent percentage, higher the overall reagent cost
 - Reagent cost for ISS and/or ISCO/ISS is a <u>small</u> percentage of total remediation costs
 - Treatability studies with over 12 MGP site soils found that between 1% to 2% ISCO reagent generally works well

ISCO/SPS Dose-Response

BURNS

Example: Treatability Studies with MGP Soils

SITE BACKGROUND

- Former MGP site (WI), contaminated with BTEX, Naphthalene & PAHs
- <u>Priorities</u>: Reduction in contaminant mass & reduction in leaching of BTEX and Naphthalene
- Contamination Location- Approximately 20 feet bgs or higher.

Soil (former MGP site, Racine, WI)

Baseline Concentrations	Soil (mg/kg)	SPLP (µg/L)
BTEX	1,580	1,991
NAP	2,699	4,602
PAH*	4,057	6,253

* Includes NAP

Results of Treatability Studies with MGP Site Soils: Contaminant Mass Removal

	BTEX	PAH	
Reaction	Removal	Removal	
	(%)	(%)	
Control	0.6	-0.3	
SPS/ISS	64	70	
SPS/NaOH	56	62	ISCO destroy
ISS	0.7	-1	contaminants

Reduction in Leachability (SPLP) After 28 Days

Reaction	BTEX Reduction (%)	PAH Reduction (%)	
Control	1	0	
SPS/ISS	74	76	Combined
SPS/NaOH	12	14	ISCO/ISS reduced leaching
ISS	26	22	more than either
SRB	3	4	stand-alone

Full-Scale Implementations of Combined ISCO/ISS in the United States are Underway at Different MGP Sites

Treatability studies were completed first

- Pilot tests were successfully completed at a MGP site with 1-4% sodium persulfate and 4-8% Portland cement
 - > 25' x 25' pilot cells
- Remedial design completed
- Process of Full-scale remediation is underway

Combined ISCO/ISS can be Implemented with ISS Equipment

ISS Equipment in Full Operation

Mixing Equipment

Disclaimer: Pictures in this presentation are taken from sources on Internet and/or presentations by others

CREATE AMAZING.

Vipul J Srivastava 630-561-3396

PeroxyChem ISCO-ISS Study Results

Brant Smith, Ph.D., PE

PeroxyChem Studies

- PeroxyChem in-house studies
 - Alkaline activated persulfate*
- Evaluated
 - Oxidant dosage (Klozur[®] SP)
 - Portland cement (PC) vs blend of PC and Blast Furnace Slag (BFS)
 - Moisture content
- Soils: Clays and sands
- Binders Tested
 - Lafarge Type I/II Alpena Portland cement
 - Maxcem 70/30 (Lafarge PC and BFS)
- Assessing impacts on:
 - Unconfined compressive strength (UCS)
 - Hydraulic conductivity

* PeroxyChem LLC ("PeroxyChem") is the owner of U.S. Patents No: 7,576,254, US App 62/890,098 and their foreign equivalents. The purchase of PeroxyChem's Klozur[®] persulfate includes with it, the grant of a limited license under the foregoing patent at no additional cost to the buyer.

Common Objectives of ISS

- Reduced hydraulic conductivity
 - 2-3 orders of magnitude below native soils
 - 1 x 10⁻⁶ cm/sec
- Unconfined Compressive Strength (UCS)
 - "Workable" ~20-60 psi
 - Hardened
 - ISS often targets 50 psi
- Lower contaminant flux and leachate concentrations

General Relationship between Soil Consistency and Unconfined Compressive Strength						
	Unconfine	ed Compressive	e Strength (UC	S) Ranges		
Consistency	р	si	kPa (KN/m ²)			
	Low	High	Low	High		
Very soft	0	3	0	24		
Soft	3	7	24	48		
Medium	7	14	48	96		
Stiff	14	28	96	192		
Very Stiff	28	56	192	383		
Hard	>56 >383					
Typical target range for "workable" soils ~20-60 psi						

Solutions Compressive Strength Over 180 Days PeroxyChem

- Adding ISCO with ISS can result in greater UCS than ISS reagents only
- 8% BFS blend with Klozur[®] SP was approximately the same strength as 15% BFS blend only
- Excess strength used to decrease reagents added = less soil bulking = less disposal

Rate of Solidification

(41

predictive

- ISS often uses 7 and 28 day
 Adding SP can lead to higher UCS
 Common IS Targets
 - Rate of solidification can be slower
 - Day 7 UCS is not as predictive in ISCO-ISS as ISS only

Day 7 UCS in this study was higher than usual. Often, Day 7 can be very low but UCS evolves to target levels over 28-90 days. Longer bench studies recommended

	UCS as a Percent of Day 28: 8% PC/BFS						
	Day	0 % SP	1% SP	2% SP	4% SP		
	7	53%	52%	33%	44%		
ss 🚄	→ 28	100%	100%	100%	100%		
	56		116%	121%	81%		
	90	147%	128%	106%	104%		
	180	187%	148%	133%	133%		

UCS as a Percent of Day 180: 8% PC/BFS

Day	0 % SP	1% SP	2% SP	4% SP
7	29%	35%	25%	33%
28	54%	68%	75%	75%
56		78%	91%	61%
90	79%	86%	80%	78%
180	100%	100%	100%	100%

Moisture Content

- Even vadose zone soils can have significant moisture
- Amount of moisture in soil mixing far exceeds classic concrete
- Many contractors use moisture to lubricate subsurface for equipment

	Motor Moisht	Total Maisht	Moisture	Content		
% of PV	(lbs)	(lbs)	% of Total Weight	% Dry Weight		
10	2.2	112	2%	2%		
25	5.5	115	5%	5%		
50	10.9	121	9%	10%		
75	16.4	126	13%	15%		
100	21.8	132	17%	20%		
125	27.3	127	20%	25%		
Concrete ~7 to 8 %						
Assuming 35% porosity and 110 lbs/ft ³						

specific field $(\%)$ + specific Retention $(\%)$ = 100 % of a Pore volume
<u>Specific Yield: % of Pore Volume that will drain by gravity</u>
<u>Specific Retention</u> : % of Pore Volume that is retained by soils after
gravity drainage

a a sifild Doto b to b (0/) = 100.0/ of a

Material	Avg Specific Yield	Avg Specific Retention
Clay	2%	98%
Sandy Clay	7%	93%
Sand	21% to 27%	73% to 79%
Source: Fetter 3 rd Ed 2	1994	

Water Content

- Increasing water content resulted in decreased UCS
- BFS blend stronger than PC only
- PC only 0.8x and 1x very similar
- Most points above 50 psi
 - Had this been an actual site, <8% binder would have been used

- Moisture had marginal to no impact on 28 Day hydraulic conductivity
 - Slight impact to Portland cement
 - PC/BFS very consistent
- Results may be soil specific

Addition of BFS on UCS

 Replace 30% of Portland with Blast Furnace Slag resulted in higher UCS for most test conditions

	8% PC		8% PC/BFS		
Klozur SP (% w/w soil)	Day 90 UCS (psi)	% of ISS only	Day 90 UCS (psi)	% of ISS only	
0	90	100%	110	100%	
1	105	117%	160	145%	
2	110	122%	175	159%	
4	75	83%	140	127%	

Excess strength used to reduce total reagents which decreases bulking and associated handling/disposal costs

Addition of BFS: Hydraulic Conductivity

	Klozur SP		Binder Binder	der	
Pair	(%)	Binder (%)	(PV)	PC/BFS	РС
1	0	2	1.25	4.1E-07	8.1E-07
2	0	8	1.25	1.2E-07	2.8E-07
3	1	2	1.25	6.6E-07	7.2E-07
4	1	8	0.8	1.4E-07	1.7E-07
5	1	8	1.25	1.3E-07	8.6E-07
6	1	8	2	1.6E-07	4.2E-07
7	2	4	1.25	1.8E-07	4.3E-07
8	4	8	1.25	1.4E-07	1.6E-07
			Average	2.4E-07	4.8E-07
				Difference	50%

Environmental Solutions

BFS Blend lower in every pair and more consistent

46

Study Summary

- Hydraulic conductivity
 - Minimal impact of varying binder ratios or Klozur SP
 - PC/BFS blend had lower HC for each test condition compared to PC only

• UCS

- Day 7 less predictive with ISCO-ISS than ISS only
- Lower UCS with increasing moisture content
- Increasing UCS:
 - Increased binder concentration
 - Addition of BFS
 - Addition of Klozur[®] SP
 - Going above 2% Klozur[®] SP can sometimes result in lower UCS

ISS-ISCO OF PCE IN A RESIDENTIAL SETTING

PRESENTED BY: JOEL PARKER

KENT CLEANERS, LANSING, MI

Kent Cleaners Overview

- Dry cleaner 1958-2015
- Orphan State led site (EGLE)
- Surrounded by residential neighborhood
- Off-site Vapor Intrusion (VI) Assessment in 2017-2018
 - Soil gas > SLs off-site
 - SSDS in one home (527 South Dunlap)
- Significant soil impact: PCE > C_{sat} down to 22' bgs in center of site
- Groundwater typically encountered at 30-35' bgs
- Purpose of soil remediation is to reduce soil mass to lessen potential for further VI (hoping for 75-80% reduction)

Extent of PCE in Soil

Kent Cleaners Overview

- Majority of the 0.4-acre site was impacted & long term off-site VI source
- Small size, tight spatial constraints with adjacent residential
- Residential neighborhood considerations – "intrusiveness"
- Challenges for conventional one technology strategies
 - Sheet piling for excavation & haz waste costs
 - Clay soils
- Let's explore potential to couple two technologies – ISCO & ISS

Combined Remedy

One single soil mixing application:

- Reduce contaminant mass with ISCO
- Stabilize/solidify the remaining contaminant mass with ISS
- Optimize treated soil characteristics for buildability

Key Logistics

- Demo buildings
- Site Prep Excavate & dispose of non-haz and surficial haz soils to make room for "swell"
- Berm
- Water

Lang Tool Company – Dual Axis Blender

- Delivery and mixing in same tooling
- Contact between remediation additive and soil
- Measures quantity of reagent solution
- GPS system gives operator real time feedback on location

How do we do this?

- 10' x 15' cells
- Lower tier (7-23') first
- Then upper tier

		//T	-				-		
		E1 E 51 5	⊒/ ЕВ 1	51 ^{E7} 51	^{E8} 51	^{E9} 51	E1051	E151	12 51
¥	E1 5	2/12/	E5 E8 52	52 ^{E7} 52	^{E8} 52	^{E9} 52	E10_	E115	⁻¹² 52
	E1 53	E2 53/ E	5 ₅₃ E6	53 ^{E7} 53	E8 55	E9 53	E10	Elles.	123
	(E1 54 E2	54 / E	3 ₅₄ E6	54 87 54	E8_4	E954	E10	Eller I	134
/E	^{:1} 55/ ^{E2} 55/	E4 E	₹ <u>5</u> E6	55 E7 55	E855	E9 55	E 105	E115	125
/ E1	58/ ^{E2} 59	E4 56 E	36 E8	58 ^{E7} 58	58 <u>-</u> 63	^{E9} se	E 1050	E1156	512 ₅₈
	7/57/53	E4 5 E5	57 E8	57 ^{E7} 57	E8 57	E9 57	E16	E115, 1	12-7
E1 58	/E2 /E3 /E 58 / 58 /E	4 58 / ES	58 E8	58 ^{E7} 58	E8 58	E9 ₅₈	E1058	E1158	-12 ₅₈
(E1 59 /E	.2 59/E3 ₅₉ E	4 ₅₉ ES	5 ₅₉ E6	59 E7 59	E8 59	E9 58	E10g	EILE	120
E1510/E25	10 EZ10 E	4510 ES	510 EG	510 ^{E7} 510	⁶⁹ 519	F9510	E1810	E1416	12 510
Easting	Northing	Elev	Dev	East	ing	Not	thing	Elev	Dev
13071494.19	438270.85	832.40	-0.10	130714	94.69	4382	244.71	832.49	-0.02
13071494.59	438265.41	832.44	-0.06	130714	90.28	4382	250.62	832.52	0.02
13071489.64	438270.57	832.49	-0.01	130714	90.49	4382	244.83	832.39	-0.11

	-11.0-	12.0	-12,0	-12.0	11.0	-14.0	-14,0			2
HATCHED CELLS ARE TO RECEIVE THE HIGH ISCO DOSAGE: THE AREA IS 1.660 FTP2	E2 S1	E6 _{S1}	E7 S1	E8 _{S1}	E9 _{S1}	E10 S1	E11 _{S1}	E12 S1		0
THE ENTIRE TREATMENT AREA IS 5,173 FT^2. THE AREA THAT WILL RECEIVE THE LOW DOSAGE OF	2 E5	E6 85	E7 52	E8 83	E9 52	E10 SS	E11 SS	E12 S2	12.0	1
ISCO IS 14,513 FT-2.	E5 SA	E6 \$3	ET S3	E8/53	E9 S3	E10 S3	E11 S3	E12 S3	10.0	
E1 S4 E2 S4	E5 _{S4}	E6 54	E7 S4	E854	E9'S4	E10.	E11 _{S4}	E12 S4	10.0	
E1 S5 E2 S5 E4	E5 _{S5}	E6 55	E7 \$5	E855	E9 85	E10 S5	E11 _{S5}	E15 ²²	10.0	
E1 S6 E2 S6 E4 S6	5 E5 _{S6}	E6/56.	E7 56	E8 S6	E9 56	E10 S6	E11 S6	E12 S6	10.0	
$\left \begin{array}{c} E1 \\ S7 \\ S7 \end{array} \right \left \begin{array}{c} E2 \\ S7 \\ S7 \end{array} \right \left \begin{array}{c} E3 \\ E4 \\ S7 \\ S$	E5 57	E6 _{S7}	E7 _{S7}	E8 _{S7}	E9 _{S7}	E10 _{S7}	E11 _{S7}	E12 S7	11.0	
E1 S8 S8 E2 E3 E4 S8	E5 88	E6 58	E7 _{S8}	E8 88	E9 58	E10 58	E11 S8	E12 88	12,0	
E1 S9 E2 E3 S9 E4 S9	E2 89	E6 89	E7 _{S9}	E8 83	E9 59	E10 59	E11 59	E12 59	12,0	
^{12,0} E1 _{S10} E2 _{S10} E3 _{S10} E4 S10	^{E5} S10	E6 S10	E7 S10	E8 S10	^{E9} S10	E10 _{S10}	E11 _{S10}	E12 S10	10.3	
15.0 15.0 15.0	-15.0	-12,0-			-11.0-		14,0	-10,7-		
							LAN	G T00	L CC).

ISS – ISCO HIGHLIGHTS

- Sodium Persulfate (Klozur[®] SP) oxidation (alkaline activated) for destruction of contaminant mass
 - 440,000 pounds of $Klozur^{\mathbb{R}}$ SP
 - 1% SP for all but center
 - 2% SP for center hot spot
 - Delivery and mixing accomplished via Lang Tool Company (LTC) Dual Axis Blender
 - 28 days of mixing 500 CY/d
- Insitu stabilization (ISS) of mixed, blended soils with Portland cement to provide structural soil stability and binding potential
 - 4% PC, 1.6M pounds
- Bench tests to verify dosages
- Performed soil mixing in two tiers (upper and lower)
- Treated a total of 12,354 CY of soil

Verification of Remediation

- 36 discrete soil samples from 12 locations
- Total PCE concentration in soil
- Underlying groundwater from previous known locations "post" remediation

Tracking ISS – ISCO: Soil

- Avg. Pre-remediation PCE of 5,000,000 ug/kg in this area
- 1.6M on Day 1
- Continued degradation beyond Day 45
- Final concentration of 60,000 ug/kg

Tracking ISS – ISCO: Soil

- 90-94% reduction in mass
- UCS of 25-50 psi (Day 60)
- Underlying groundwater has reduced in concentration by 1-2 OOM
- Saved client > \$2.5Million
 v. excavation
- Buildable site for property
 owner

Before - 1998 kg (4405 lbs) PCE

2500

100 ft

Looking north at a 30° plunge

FIGURE 8

Tracking ISS – ISCO: Groundwater

Concentration (ug/L)

ECEN APPROXIMATE PROPERTY BOUNDAN REMOVED BUILDING AND

ONED WELL LOCATION

REINSTALLED WELL LOCATION

FIGURE 7

ISCO-ISS SAMPLE LOCATION

HAMP MA HEWS

- 660 ug/L PCE before remediation •
- ISS ISCO initialized September 2019

MW-BR

< 5 ug/L PCE after ISS - ISCO •

Dunlap St

S History

PCE Concentration in Groundwater (ug/L) at MW-2/MW-2R 700 600 ISCO Concentration (ug/L) 500 400 300 200 100 March April November November January 2017 2018 2019 2020 2021 **MW-1** MW-2 MW-4 150 700 150 PCE Cis-1,2-DCE 600 500 100 100 400 300 50 50 200 100 Before After Before After Before After remediation remediation remediation remediation remediation remediation

89% reduction

84% reduction

Final Site Restoration

10-21

Lessons Learned...

- Technology works well for PCE in clay
- Site prep is a key consideration
- Choose verification parameters wisely, e.g., UCS, K, Totals, SPLP, soil gas, groundwater?
- ISCO destruction can continue out to 45-60 days
- More soil data always better

Summary

- Combining ISS with ISCO:
 - Benefits ISCO soil mixing applications by solidifying soil post application
 - Benefits ISS applications by:
 - Reducing contaminant mass
 - Lower leachate concentrations
 - Higher UCS
 - Another input to allow better control over UCS
 - Cost Savings
 - Incorporating Klozur[®] Persulfate reduces the overall reagent dosing
 - Less reagents result in less swell/bulking and lower handling disposal costs of that material

Key Takeaways Continued

🗧) PeroxyChem

- Bench Tests are recommended
 - Control for key variables of binder, Klozur® SP, and moisture content
 - Evaluate lower reagent dosages that take advantage of additional strength provided by ISCO-ISS
 - Consider binders such as Portland cement and Portland cement blended with Blast Furnace Slag
- ISCO-ISS has been successfully applied in the field many times
 - Contaminant destruction
 - Solidify residual contaminants
 - Decrease groundwater concentrations
 - Mitigate vapor intrusion issues

Questions?

Vipul Srivastava

Senior Remediation Specialist Burns & McDonnell vsrivastava@burnsmcd.com

Joel Parker

Principal Engineer Hamp Mathews & Associates jparker@hampmathews.com

Brant Smith, PhD, PE

Technology Director PeroxyChem brant.smith@evonik.com

remediation@evonik.com

