#### Klozur<sup>®</sup> KP Slurry Injection via Hydraulic Fracturing: Fundamentals, Methods, and Lessons Learned

Webinar | September 22, 2021





- Klozur<sup>®</sup> KP Chemistry
- Klozur<sup>®</sup> KP Case Studies
- Why KP?
- Lessons Learned
- Application:
  - Fracture Form
  - Managing Daylighting
  - Diffusion of Reagents

Chemistry Dose Contact And Monitoring



#### Klozur<sup>®</sup> Persulfate Differences between Sodium and Potassium Persulfates

# KL SZUR<sup>®</sup> SP

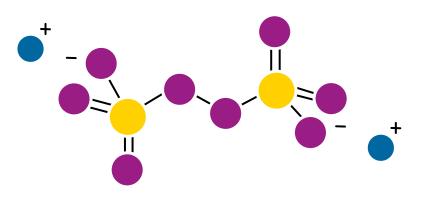
Environmental Grade Sodium Persulfate

# KLOZUR<sup>®</sup> KP

Environmental Grade Potassium Persulfate

#### Key Differences:

- Solubility
- Na<sup>+</sup> vs K<sup>+</sup> residual


| Temperature | Klozu | ır <sup>®</sup> SP | Klozu | r® KP |
|-------------|-------|--------------------|-------|-------|
| (C)         | wt%   | g/L                | wt%   | g/L   |
| 0           | 36.5  | 480                | 1.6   | 17    |
| 10          | 40.1  | 540                | 2.6   | 29    |
| 20          | 41.8  | 570                | 4.5   | 47    |
| 25          | 42.3  | 580                | 5.7   | 59    |

| Characteristic               | Klozur <sup>®</sup> SP | Klozur <sup>®</sup> KP |
|------------------------------|------------------------|------------------------|
| Formula                      | $Na_2S_2O_8$           | $K_2S_2O_8$            |
| Molecular Weight             | 238.1                  | 270.3                  |
| Color                        | White                  | White                  |
| Loose Bulk<br>Density (g/cc) | 1.12                   | 1.30                   |



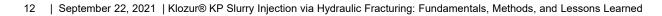
# All Klozur<sup>®</sup> persulfates release the persulfate anion

- Sodium and potassium persulfate are used in environmental remediation applications
- A strong oxidant
- Activation results in the formation of oxidative and reductive radicals
- Applicable across a broad range of contaminants
- Extended subsurface lifetime (weeks to months)
- Little to no gas evolution



#### Free Radical Chemistry:

Persulfates produce free radicals in many diverse reaction situations

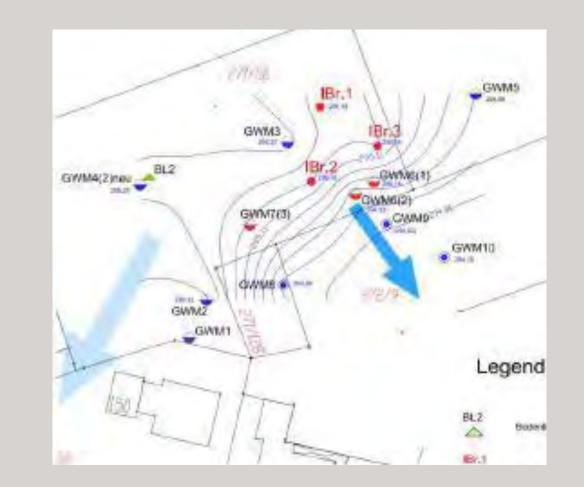

$$S_2O_8^{-2}$$
 + activator  $\longrightarrow$   $SO_4^{-1}$  + ( $SO_4^{-1}$  or  $SO_4^{-2}$ )

Activation produces a radical which is more powerful and kinetically fast



#### **Klozur<sup>®</sup> Persulfate Degradation Pathways**

| Petroleum Hydrocarbons          | PCE, TCE, DCE and VC                     |                       |  |
|---------------------------------|------------------------------------------|-----------------------|--|
| Petroleum Hydrocarbons          |                                          |                       |  |
|                                 | Chlorahonzonoo                           | Carbon Tetrachloride  |  |
| MGP Residuals                   | Chlorobenzenes                           | 1,1,1-Trichloroethane |  |
| BTEX                            | Chlorophenols                            | Dichloroethanes       |  |
|                                 | Select Pesticides                        |                       |  |
| PAHs                            | Coloct Elucrimeted Commencedo            | Select Pesticides     |  |
| Oxygenates                      | Select Fluorinated Compounds             | Select Energetics     |  |
|                                 | PCBs                                     | C                     |  |
| I,4-Dioxane                     | Select Energetics                        |                       |  |
| Activation Me                   | ethods: Alkaline, Hydrogen Peroxide, and | Heat                  |  |
| Activation Method: Iron Chelate |                                          |                       |  |






Klozur<sup>®</sup> KP Reduces cVOC and BTEX by >99% at Former Industrial Site in Germany

Consultant: Riskcom Contractor: Toterra Ltd.

Area: Interval: Klozur<sup>®</sup> KP: Activator: 200 m<sup>2</sup> (2,150 ft<sup>2</sup>) 7-11 m bgs (23-36 ft bgs) 1,350 Kg (~3,000 lbs) 200 Kg (441 lbs) iron lactate





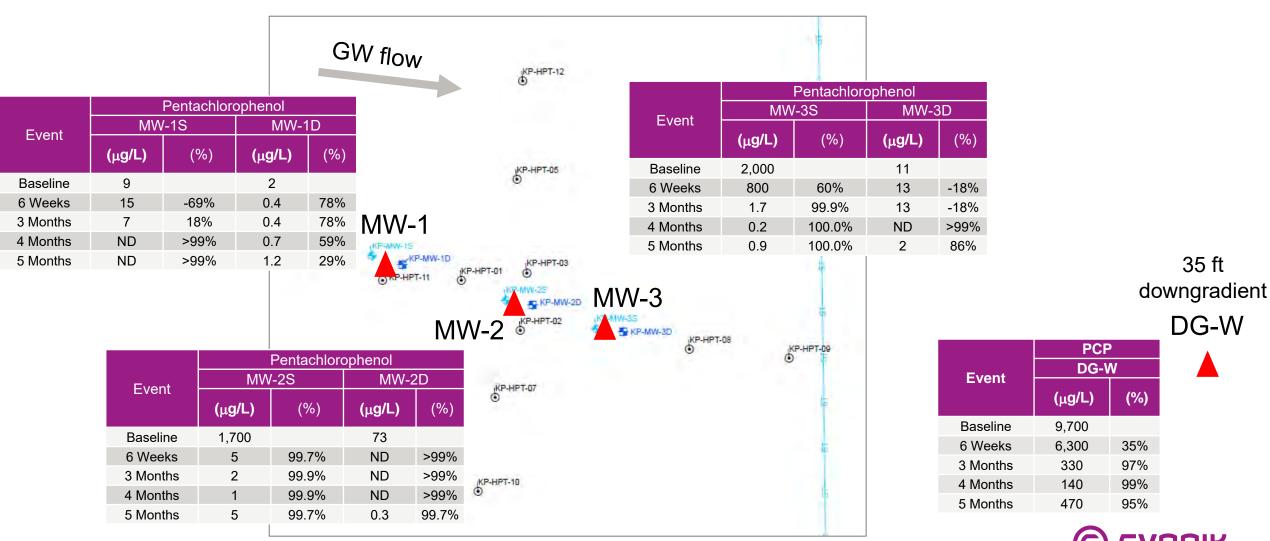
#### Klozur<sup>®</sup> KP Case Study Former Industrial Site in Germany

- 1 Year Post Application Monitoring
- Successful distribution of KP and activator over a 200 m<sup>2</sup> area (2,152 ft<sup>2</sup>) with 3 injection locations
- Activated Klozur<sup>®</sup> KP resulted in up to 99% treatment of Target COCs

| Date              | Contaminant (mg/L) |        |        |        |       |  |  |
|-------------------|--------------------|--------|--------|--------|-------|--|--|
| Dale              | PCE                | TCE    | cDCE   | BTEX   | PAH   |  |  |
| Baseline          | 13,000             | 22,000 | 52,000 | 20,713 | 98    |  |  |
| 6 Months Post     | 8                  | 23     | 3,800  | 47     | 5     |  |  |
| Percent Reduction | 99.9%              | 99.9%  | 92.7%  | 99.8%  | 94.5% |  |  |
| 12 Months Post    | 4                  | 6      | 13,000 | 2,570  | 104   |  |  |
| Percent Reduction | 99.97%             | 99.97% | 75.0%  | 87.6%  | -5.3% |  |  |



Klozur<sup>®</sup> KP Reduces Pentachlorophenol by up to 99 percent at Former Wood Treatment Site in Pacific Northwest USA


Consultant: ERM Contractor: Cascade

Klozur KP: Activator: Injection: Spacing: Interval: 4,400 lbs Hydrated Lime 12 DPT locations 5 to 10 ft 32 to 40 ft bgs



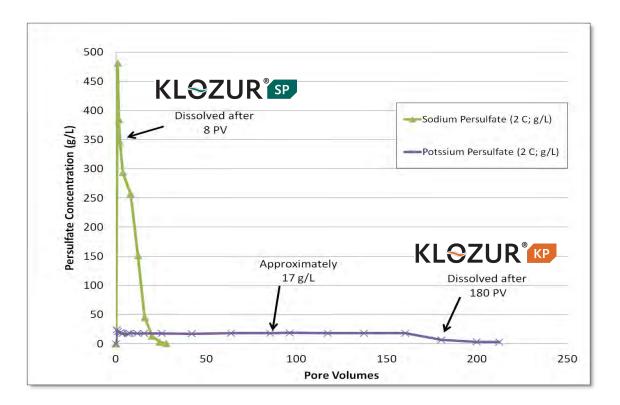


#### Klozur<sup>®</sup> KP Case Study Pentachlorophenol Treatment



Leading Bevond Chemistr

16 | September 22, 2021 | Klozur® KP Slurry Injection via Hydraulic Fracturing: Fundamentals, Methods, and Lessons Learned


#### Klozur<sup>®</sup> KP - Case Study Summary

- Klozur<sup>®</sup> KP has been used at a variety of sites to remediate
  - Variety of contaminants
  - Co-mingled plumes
  - Variety of sites
- Treatment has been found to be ~99 percent reduction
- Hydrated lime is most common activator (alkaline activation) although iron-chelate has also been used.
- Once dissolved, remediation chemistry of Klozur<sup>®</sup> KP is the same as Klozur<sup>®</sup> SP



#### Time

- Klozur<sup>®</sup> KP (potassium persulfate) dissolves over a period of time to maintain a consistent concentration
- Klozur<sup>®</sup> SP dissolved and available at time of application
  - Typically reactive for 2-8 weeks





#### What Do You Do with More Remediation Time?

- Treating Aqueous Phase Contaminants
  - Permeable Reactive Barriers (PRBs)
  - Source zones
- Longer Contact Time
  - Low permeable soils
  - Low solubility contaminants
  - Low contaminant concentrations
- High groundwater velocity

| Conceptual Klozur <sup>®</sup> KP Persistence (months) |         |             |     |     |     |     |     |
|--------------------------------------------------------|---------|-------------|-----|-----|-----|-----|-----|
| Temp (∘C)                                              |         |             | 5   | 10  | 15  | 20  | 25  |
|                                                        | Solub   | ility (g/L) | 22  | 29  | 37  | 47  | 59  |
|                                                        | (ft/yr) | (m/yr)      |     |     |     |     |     |
| age                                                    | 10      | 3           | 315 | 239 | 187 | 147 | 117 |
| eeb                                                    | 25      | 8           | 126 | 96  | 75  | 59  | 47  |
| er So<br>ocity                                         | 50      | 15          | 63  | 48  | 37  | 29  | 23  |
| wate<br>Velc                                           | 75      | 23          | 42  | 32  | 25  | 20  | 16  |
| Groundwater Seepage<br>Velocity                        | 100     | 20          | 31  | 24  | 19  | 15  | 12  |
| Gro                                                    | 500     | 152         | 6   | 5   | 4   | 3   | 2   |

#### 1% KP by w/w Soil

15% ePV

30 ft length parallel to groundwater flow

Assumes achieving 50% solubility in cross section or pore volume



#### **Groundwater Contamination**

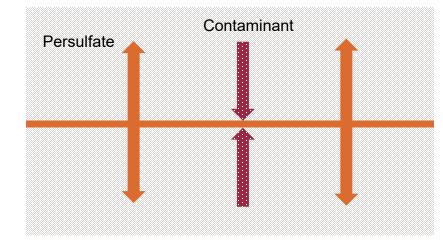
Aqueous phase contaminants to migrate to solid state Klozur<sup>®</sup> KP

- Permeable Reactive Barriers (PRBs)
  - Treating groundwater contamination as it passes into PRB. Soil contamination directly downgradient of PRB.
    - Will require periodically refreshment
- Source zones/Groundwater plumes
  - Typically treated with Klozur® SP
  - Low K<sub>oc</sub> contaminants are not on soil, primarily in aqueous phase
    - 1,4-Dioxane, vinyl chloride, MTBE, etc
  - Solid slurry displaces less groundwater

| Contaminant          | EPA K <sub>oc</sub>                                                                   | F <sub>oc</sub> | Contaminant<br>Distribution<br>(%) |      |  |
|----------------------|---------------------------------------------------------------------------------------|-----------------|------------------------------------|------|--|
|                      |                                                                                       |                 | GW                                 | Soil |  |
| 1,4-Dioxane          | 17                                                                                    |                 | 70%                                | 30%  |  |
| 1,1,1-TCA            | 110                                                                                   |                 | 27%                                | 73%  |  |
| 1,2-DCA              | 38                                                                                    |                 | 51%                                | 49%  |  |
| 1,1-DCA              | 53                                                                                    | 0.005           | 43%                                | 57%  |  |
| DCE                  | 38                                                                                    |                 | 51%                                | 49%  |  |
| Benzene              | 59                                                                                    |                 | 40%                                | 60%  |  |
| Toluene              | 182                                                                                   |                 | 18%                                | 82%  |  |
| Ethylbenzene         | 363                                                                                   |                 | 10%                                | 90%  |  |
| Xylene               | 386                                                                                   |                 | 9%                                 | 91%  |  |
| TCE                  | 166                                                                                   |                 | 19%                                | 81%  |  |
| Carbon Tetrachloride | 174                                                                                   |                 | 19%                                | 81%  |  |
| 1,2-Dichlorobenzene  | 617                                                                                   |                 | 6%                                 | 94%  |  |
| Dieldrin             | 21,380                                                                                |                 | 0%                                 | 100% |  |
| Note:                | 1. Assuming 1.5 g/cm <sup>3</sup> soil bulk density and effective pore volume of 0.15 |                 |                                    |      |  |

$$K_{d} = Koc * foc = \frac{Soil\left(\frac{g}{Kg}\right)}{GW\left(\frac{g}{L}\right)}$$




#### Longer Contact time: Low solubility contaminants

- Treatment time
  - Not just kinetics (PAHs/PCBs react very quickly with sulfate/hydroxyl radicals)
  - Time for entire mass to dissolve into aqueous phase
    - High Koc/low solubility
- Extended persistence allows for active oxidant to be present as contaminants slowly dissolve
  - Ex. Large PAHs, PCBs, and some pesticides
- Treatment time:
  - Contaminants treated within less than 8 weeks = treat with SP
  - Longer—treat with KP

|                  | Day 56 PCB % Reduction |       |                        |      |  |  |
|------------------|------------------------|-------|------------------------|------|--|--|
| PCB              | Klozu                  | r® SP | Klozur <sup>®</sup> KP |      |  |  |
|                  | Low                    | High  | Low                    | High |  |  |
| Arochlor<br>1254 | 12%                    | 26%   | 53%                    | 53%  |  |  |



- Low permeable soils
  - Persulfate anion to diffuse into low permeable matrix
  - Contaminant to diffuse from low permeable matrix into active treatment zone
- Low contaminant concentrations
  - Time for diffusion of  $\mu$ g/L concentrations from matrix and reagent into matrix





#### **High Groundwater Velocities**

- Is 2-4 months enough contact?
- Klozur<sup>®</sup> SP, which tends to persist 2-8 weeks, could flow out of target zone before completely reacted
  - 500 ft/yr is 42 ft/month or 10 ft/week
- As a solid, Klozur<sup>®</sup> KP would stay in treatment zone, slowly dissolving.

| Conceptual Klozur <sup>®</sup> KP Persistence (months) |         |        |     |     |     |     |     |
|--------------------------------------------------------|---------|--------|-----|-----|-----|-----|-----|
| Temp (∘C)                                              |         |        | 5   | 10  | 15  | 20  | 25  |
| Solubility (g/L)                                       |         | 22     | 29  | 37  | 47  | 59  |     |
|                                                        | (ft/yr) | (m/yr) |     |     |     |     |     |
| age                                                    | 10      | 3      | 315 | 239 | 187 | 147 | 117 |
| eebi                                                   | 25      | 8      | 126 | 96  | 75  | 59  | 47  |
| water Se<br>Velocity                                   | 50      | 15     | 63  | 48  | 37  | 29  | 23  |
| wate<br>Velo                                           | 75      | 23     | 42  | 32  | 25  | 20  | 16  |
| Groundwater Seepage<br>Velocity                        | 100     | 20     | 31  | 24  | 19  | 15  | 12  |
| Gro                                                    | 500     | 152    | 6   | 5   | 4   | 3   | 2   |

1% KP by w/w Soil

15% ePV

30 ft length parallel to groundwater flow

Assumes achieving 50% solubility in cross section or pore volume



- Monitoring
  - Have monitoring wells within the injection area/PRB
    - Monitor performance at the PRB
    - Monitor for the activity/persistence of the Klozur KP
  - Monitor for expected residuals (potassium, sodium, calcium, sulfate), residual persulfate, pH, conductivity, and ORP
- Site characterization
  - Groundwater flux is critical parameter (hydraulic conductive and groundwater gradient)
  - Effective/mobile porosity convert that to velocity
- Application
  - KP and HL being injected as high concentration solid slurries (50 to 70 percent by weight)
  - Care with fracture pressure and volumes applied per fracture to control distribution



- Klozur<sup>®</sup> KP has same powerful chemistry as Klozur<sup>®</sup> SP
  - Persulfate anion
  - -Oxidative and reductive pathways
- Klozur<sup>®</sup> KP has lower solubility that can allow more contact time in the subsurface
  PRBs
  - -Aqueous phase contaminants
  - Low solubility/high  $K_{oc}$  contaminants
  - -Low permeable soils
  - -Very high groundwater velocity sites



### Klozur<sup>®</sup> KP Slurry Injection via Hydraulic Fracturing

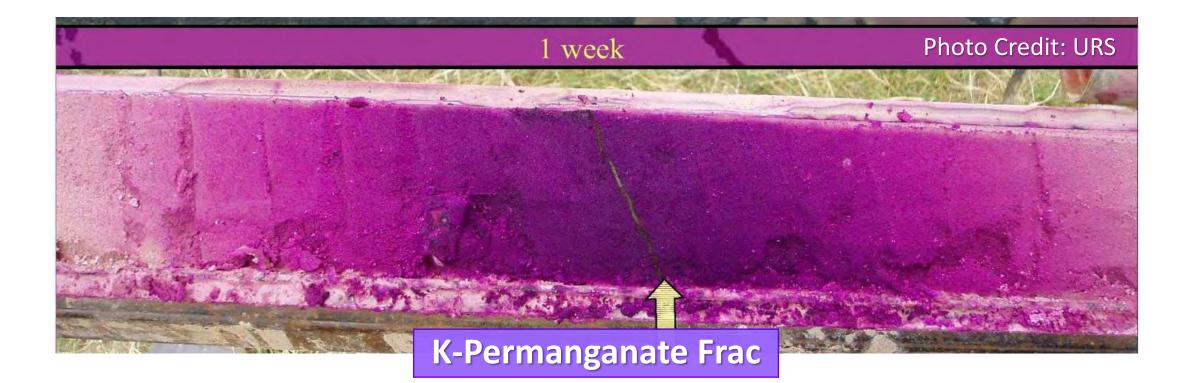


- Fracture Form and Hydraulic Fracturing Processes
- Distribution Mechanisms for Persulfate in Fractures
- Data Compiled from Six KP Projects in Five States
  - » Reagent Loading and Field Productivity
  - » Daylighting
  - » Costs
- Klozur<sup>®</sup> KP Case Study Industrial Site in New Mexico
- Q&A w/ Smith, Baird & Ross



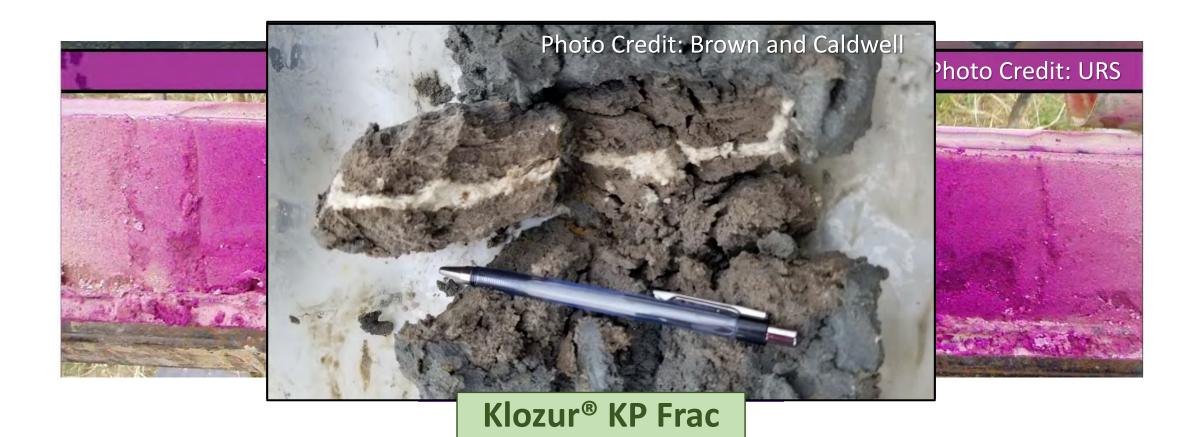


### **Controlled Hydraulic Fracturing using KP**


- Make a thick slurry
- Pump slurry into the formation
- Create a fracture in the formation
  - » Horizontal, sheetlike structure
  - » Solids-laden slurry simultaneously creates & fills fracture
- Monitor injections and record process data






#### **Oxidant Distribution via Chemical Diffusion**

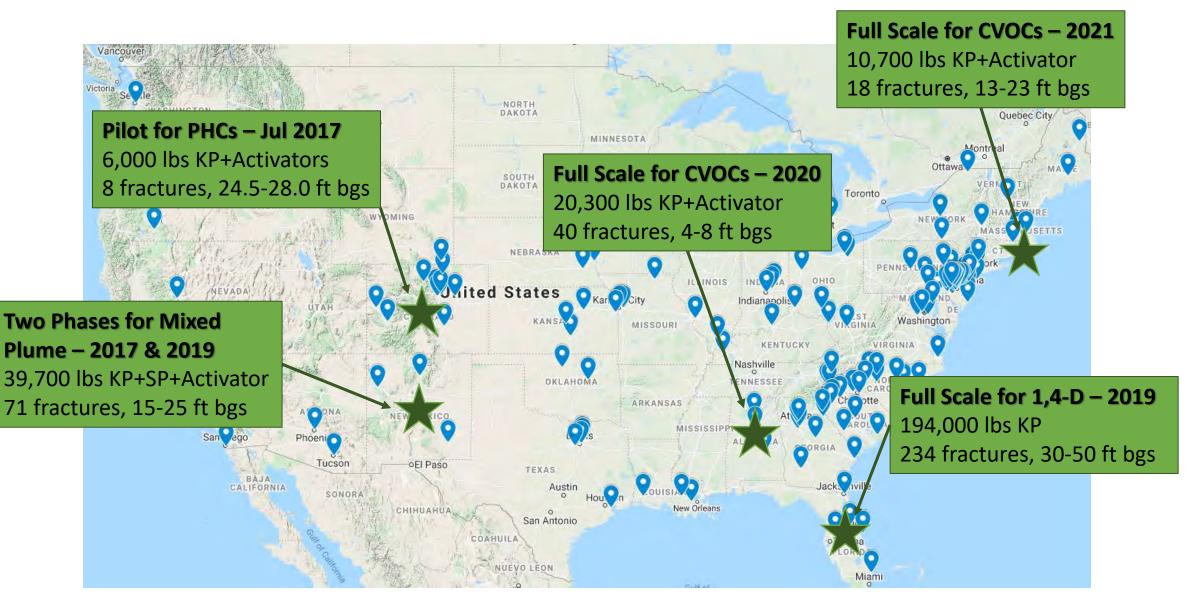




#### **Oxidant Distribution via Chemical Diffusion**





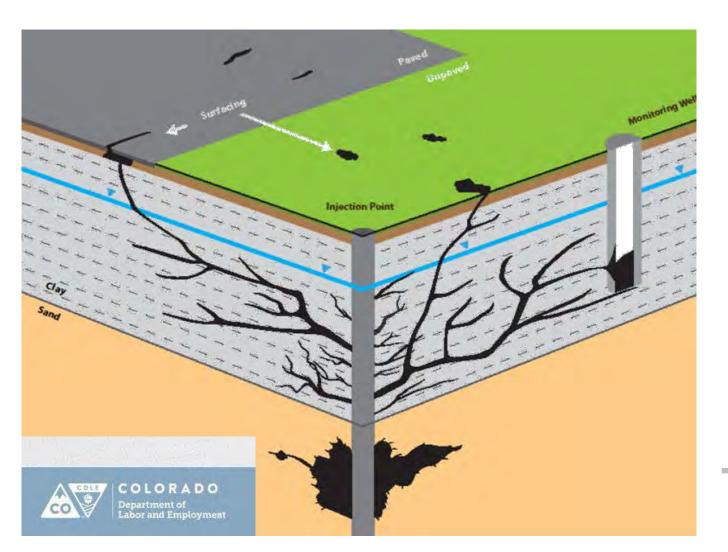

#### Oxidant Distribution via Chemical Diffusion is Well Understood and Documented



- Cavanagh, B.A., P.C. Johnson, and E.J. Daniels (2014), Reduction of Diffusive Contaminant Emissions from a Dissolved Source in a Lower Permeability Layer by Sodium Persulfate Treatment. *Environmental Science & Technology*, Vol 48
- Hønning, J., M.M. Broholm, and P.L. Bjerg (2007), Role of Diffusion in Chemical Oxidation of PCE in a Dual Permeability System. *Environmental Science & Technology*, Vol 41, Issue 24
- Johnson, R.L., P.G. Tratnyek, and R.O. Johnson (2008), Persulfate Persistence under Thermal Activation Conditions. *Environmental Science & Technology*, Vol 42, Issue 24
- Siegrist, R. L., K.S. Lowe, L.C. Murdoch, T.L. Case and D.A. Pickering (1999), Oxidization By Fracture Emplaced Reactive Solids. *Journal of Environmental Engineering*, Vol 125, Issue 5
- Struse, A.M., R.L. Siegrist, H.E. Dawson and M.A. Urynowicz (2002), Diffusive Transport of Permanganate during In Situ Oxidation. *Journal of Environmental Engineering*, Vol 128, Issue 4

## **Klozur<sup>®</sup> KP Injection Projects**



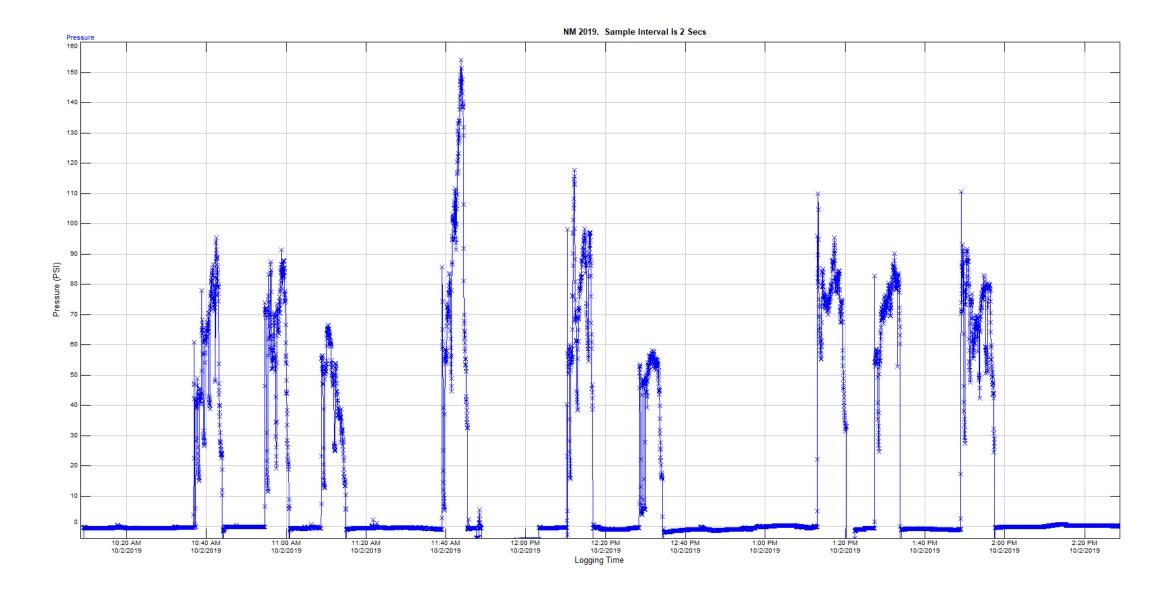



### **Reagent Loading & Field Productivity**



| Project          | KP ± SP & Activators<br>Dosing Range<br>(by dry wt soil) | Pounds/Fracture<br>(average) | Pounds/Day<br>(average) |
|------------------|----------------------------------------------------------|------------------------------|-------------------------|
| Colorado 2017    | N/A                                                      | 750                          | 3,000                   |
| New Mexico 2017  | See 'NM 2019' below                                      | 460                          | 5,500                   |
| Florida 2019     | 0.19%                                                    | 830                          | 5,100                   |
| New Mexico 2019  | 0.21% (combined)                                         | 610                          | 5,800                   |
| Alabama 2020     | 0.30%                                                    | 500                          | 3,400                   |
| New England 2021 | 0.72%                                                    | 600                          | 5,900                   |

### Daylighting is a Common Problem Often a BIG One




- Indicative of steeply dipping fractures
- Multiple causes, commonly manmade
- Excessive amounts can kill an injection project
- Can be minimized and possibly eliminated



### **Daylighting can be Minimized or Eliminated**





## Daylighting at Klozur<sup>®</sup> KP Projects



| Project                   | Injection<br>Interval (ft bgs) | Daylighting<br>Observations | Fracs<br>Attempted | Daylighting<br>Rate |
|---------------------------|--------------------------------|-----------------------------|--------------------|---------------------|
| Florida 2019              | 25-59                          | 1                           | 234                | < 1%                |
| New Mexico<br>2017 & 2019 | 15-25                          | 5                           | 71                 | 7%                  |
| Alabama 2020              | 4-8                            | 5                           | 40                 | 13%                 |
| New England 2021          | 13-23                          | 0                           | 18                 | 0%                  |
| Total                     |                                | 11                          | 363                | 5%                  |

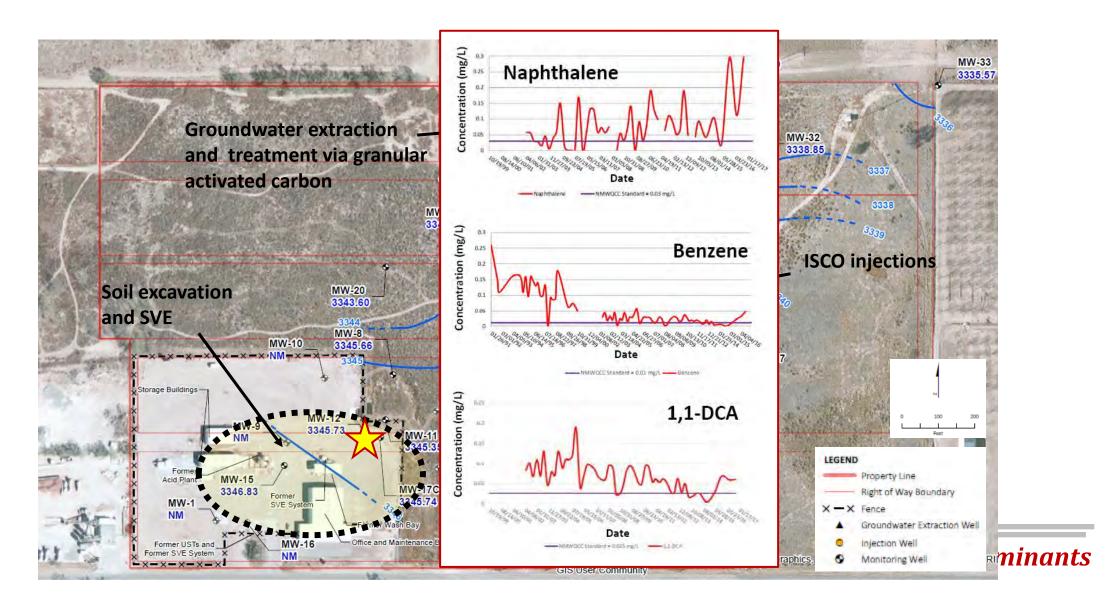
# **Example Klozur® KP Project Costs**



#### Drilling, KP ± Activators, Fracturing

| Project                   | Amendments                              | Amendment<br>Mass<br>(lbs) | Treatment Area<br>(square feet) | Treatment<br>Unit Cost<br>(\$/cy) |
|---------------------------|-----------------------------------------|----------------------------|---------------------------------|-----------------------------------|
| New Mexico<br>2017 & 2019 | Klozur® KP<br>Klozur® SP<br>Fe-EDTA     | 39,700                     | 12,500                          | \$84                              |
| Alabama<br>2020           | Klozur <sup>®</sup> KP<br>Hydrated Lime | 20,300                     | 15,300                          | \$54                              |
| Florida<br>2019           | Klozur <sup>®</sup> KP                  | 194,000                    | 47,500                          | \$55                              |
| New England<br>2021       | Klozur <sup>®</sup> KP<br>Hydrated Lime | 10,700                     | 1,350                           | \$222                             |

#### Klozur<sup>®</sup> KP Case Study Industrial Site in New Mexico



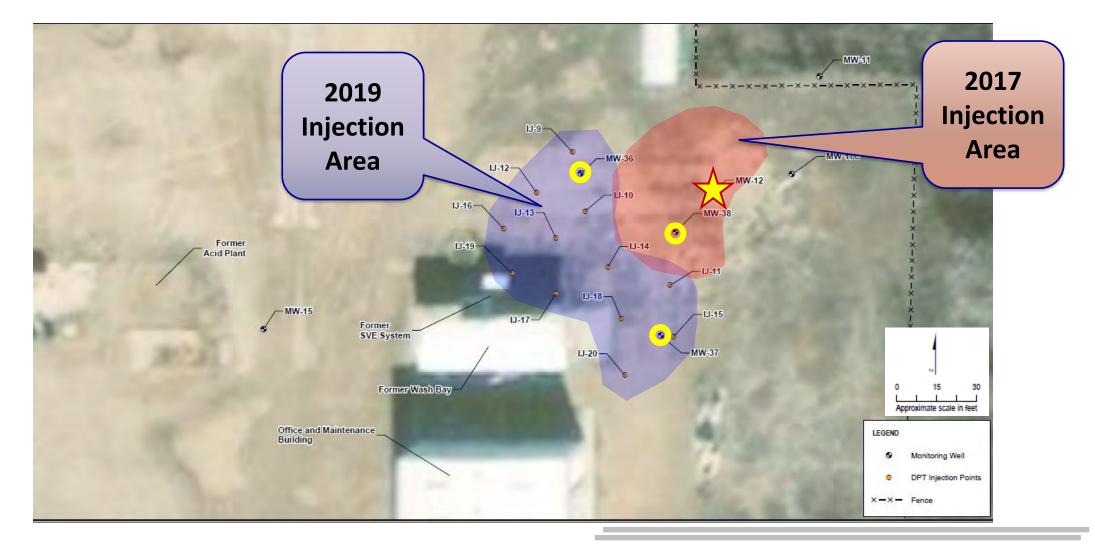

- Former industrial service facility
- Alluvial overbank deposits: Silt and silty clay with clay layers and lenses of carbonate rubble
- Primary CoCs: naphthalene, benzene, and 1,1-DCA
- Source and plume remediation approach over time based on varied CoCs, hydrogeology, and property boundary



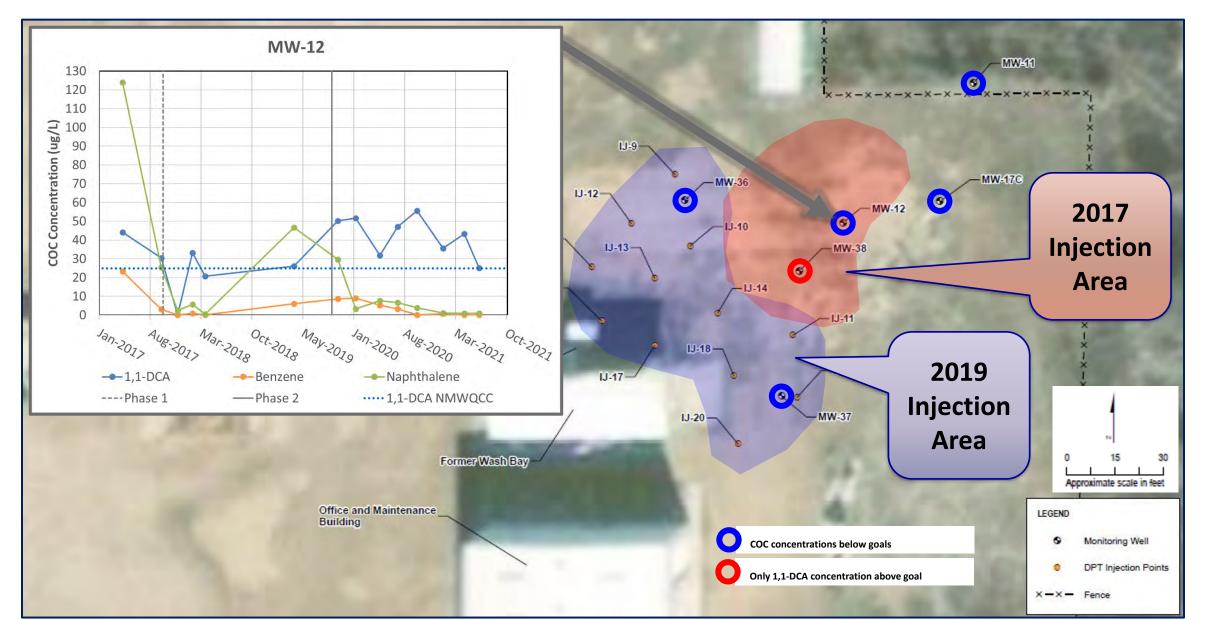
### **Treatment of Residual Source Zone**



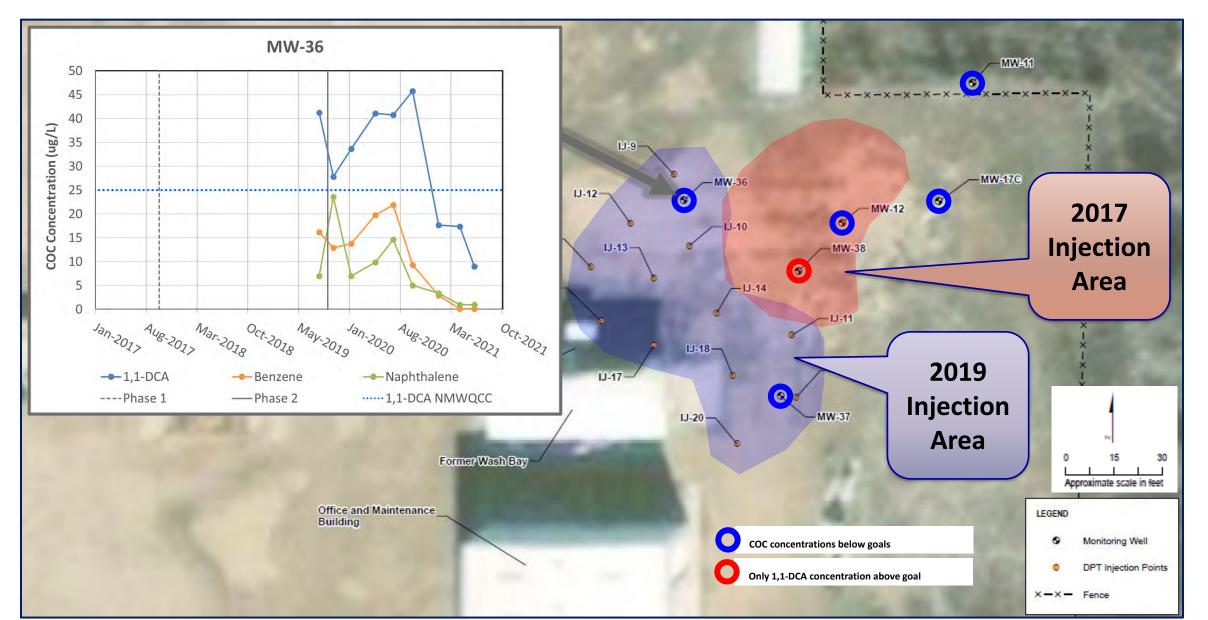



### Remedial Goal, Approach, and Additional Considerations

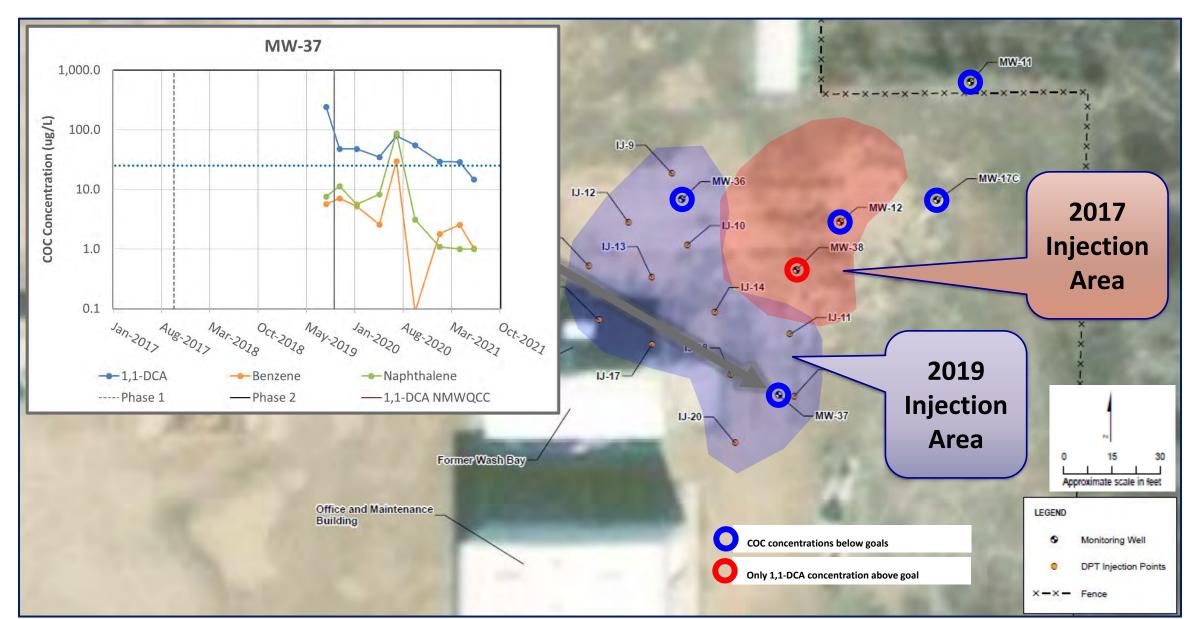



- □ Goal: Obtain NFA without long-term monitoring
- Approach
  - » Phased ISCO for treatment of residual source
  - » Hydraulic control of far downgradient plume
  - » Source polishing of 1,1-DCA with enhanced dichlorination
- Decision Points and Tasks
  - » Remedial design investigation to characterize source
  - » Treatability testing for optimal activation
  - » Execute Phase 1 injections and Phase 2, if necessary

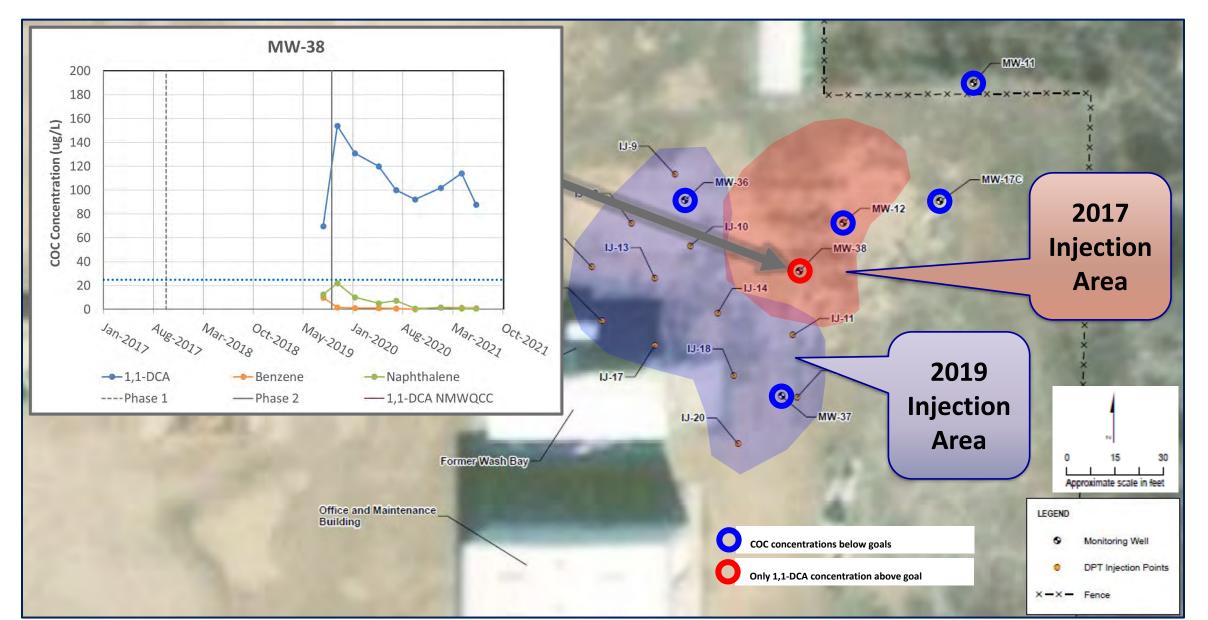
### **Treatment Areas & Performance MWs**


















#### Klozur<sup>®</sup> KP via Hydraulic Fracturing Conclusions

- Several case studies show the versatility, successful application, and treatment capabilities of Klozur<sup>®</sup> KP.
- Oxidant distribution via chemical diffusion is well-understood.
- Good fracture form is paramount. It can be attained with understanding of principles and application of proper techniques.
- Daylighting can be minimized or possibly eliminated.
- High-dose delivery of activated KP in low-k units is well-established.
- Treatment using this approach is cost effective. Total project costs are typically less than \$85 per cubic yard.

#### **Questions?**





Drew Baird, PG Senior Geologist FRx, Inc dbaird@frx-inc.com

Chapman Ross, PE Director of Technology FRx, Inc cross@frx-inc.com



Brant Smith, PhD, PE Director of Technology Evonik Active Oxygens, LLC brant.smith@evonik.com remediation@evonik.com

