

Klozur[®] KP Applications Experience: Extended Release Chemical Oxidation

Brant Smith Technical Applications Manager: ISCO PeroxyChem September 19, 2018

Field-Proven Portfolio of Remediation Technologies Based on Sound Science

Chemical Oxidation

- Klozur[®] Persulfate Portfolio
- Hydrogen Peroxide

Chemical Reduction

- EHC[®] Reagent
- EHC[®] Liquid
- Daramend[®] Reagent
- Zero Valent Iron
- GeoForm[™] Reagents

Aerobic Bioremediation

- Terramend[®] Reagent
- PermeOx[®] Ultra

Enhanced Reductive Dechlorination

- ELS[®] Microemulsion
- ELS[®] Concentrate

Metals Remediation

• MetaFix[®] Reagents

Introduction to Klozur[®] persulfate KLOZUR[®] SP

- Oxidative and reductive pathways from a single technology
- Bench and Case Studies

General Overview of Klozur KP Applications

Klozur[®] Persulfates

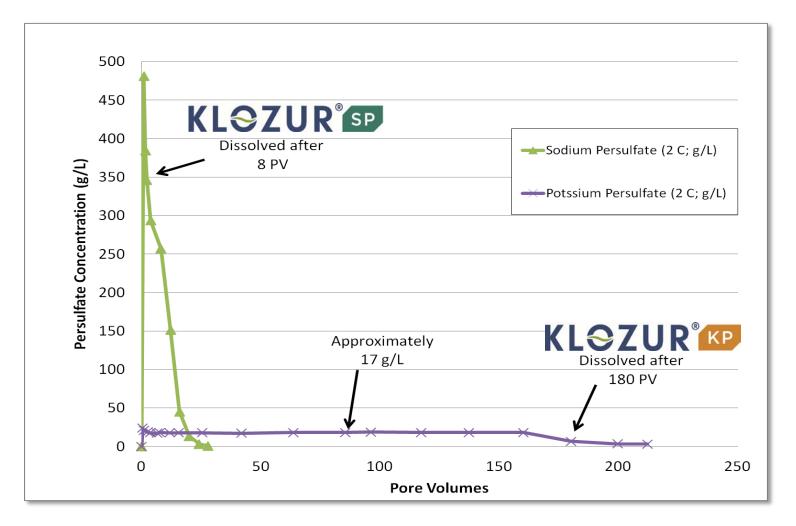
KLOZUR

 Environmental grade sodium persulfate

KLOZUR®

PeroxyChem

• Environmental grade potassium persulfate


Key Differences:

- Solubility
- Na⁺ vs K⁺ residual

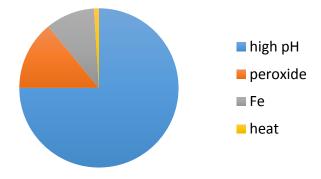
Temperature	Klozur SP		Klozur KP	
(°C)	wt%	g/L	wt%	g/L
0	36.5	480	1.6	17
10	40.1	540	2.6	29
20	41.8	570	4.5	47
25	42.3	580	5.7	59

Characteristic	SP	КР
Formula	Na ₂ S ₂ O ₈	$K_2S_2O_8$
Molecular Weight	238.1	270.3
Crystal density (g/cc)	2.59	2.48
Color	White	White
Odor	None	None
Loose bulk density (g/cc)	1.12	1.30

Permeable Reactive Barrier: Column Study

Classic: Applied at thousands of sites, the high solubility of Klozur SP is ideal for:

- Source zone treatment
 - Delivery of significant oxidative mass into the target area
 - Highly contaminated sites including nonaqueous phase liquids
 - High concentration applications


New: Low solubility and extended release can help address some of the previous technical challenges :

- Extended Release
 - Tight soils / clays matrix diffusion
 - Permeable reactive barrier applications
 - Diffusive aqueous phase contaminants (plumes, aqueous phase contaminants, etc)

PeroxyChem Activation Technologies

- Zero Valent Iron
 - Solid state activator
 - Oxidative pathway

Purchase of Klozur persulfate includes with it the grant of a limited license under PeroxyChem's patents covering the use of Klozur persulfate for environmental applications at no additional cost to the buyer

- Alkaline Activated Persulfate
 - Well suited for most applications
 - More compatible with carbon steel
 - Oxidants and reductants
- Iron-Chelate Activated Persulfate
 - Chlorinated ethenes and hydrocarbons
 - Oxidative pathway
- Heat
 - Complex sites
 - Polishing step after thermal treatment
 - Oxidants and reductants
- Hydrogen Peroxide
 - Sites that benefit from vigorous reaction with both hydrogen peroxide and sodium persulfate
 - Oxidants and reductants

Activation of Persulfate

Sodium Persulfate:

- Aqueous phase oxidant aqueous phase activators
 - NaOH (alkaline)
 - Fe / Fe-chelate
 - Hydrogen peroxide
 - Heat

Potassium Persulfate:

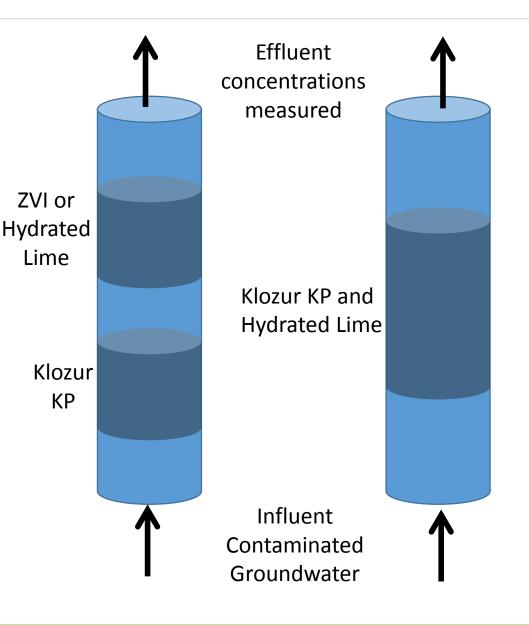
- Solid/extended release oxidant – Solid/extended release activators
 - <u>Hydrated lime-Ca(OH)₂</u> (alkaline)
 - Zero Valent Iron (ZVI)
 - Separate trench (down gradient)

Degradation Pathways

Oxidative/Aerobic	Either	Reductive/Anaerobic	
Petroleum Hydrocarbons	Chlorinated Ethenes	Select Pesticides	
BTEX	Chlorobenzenes	Select Energetics	
PAHs	Phenols	Carbon Tetrachloride	
Oxygenates	Select Pesticides	1,1,1-Trichloroethane	
1,4-dioxane	Select Fluorinated Compound PCBs	ls Dichloroethanes	

Select Energetics

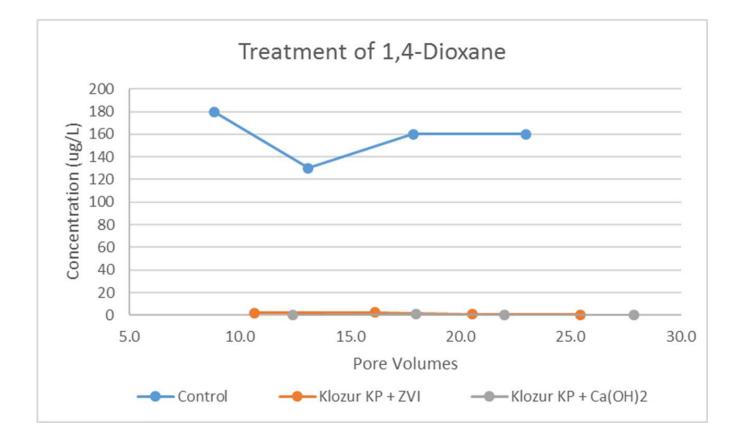
Dichloroethenes


Select Bench and Case Studies

- Site 1: Weston Solutions Superfund site in the New England
- <u>Site 2: ERM</u> Private site located in the Pacific Northwest
- <u>Site 3: AECOM</u> Former manufacturing facility located in Northeast
- <u>Site 4: Jacobs</u> Former oil well servicing facility

Treatability Column

- Up flow column reactors:
 - Klozur KP and Hydrated Lime [Ca(OH)₂] mixed together
 - Klozur KP and ZVI in separate sections due to incompatibilities
- Columns run at 20 °C
- Continuous feed of contaminated site groundwater

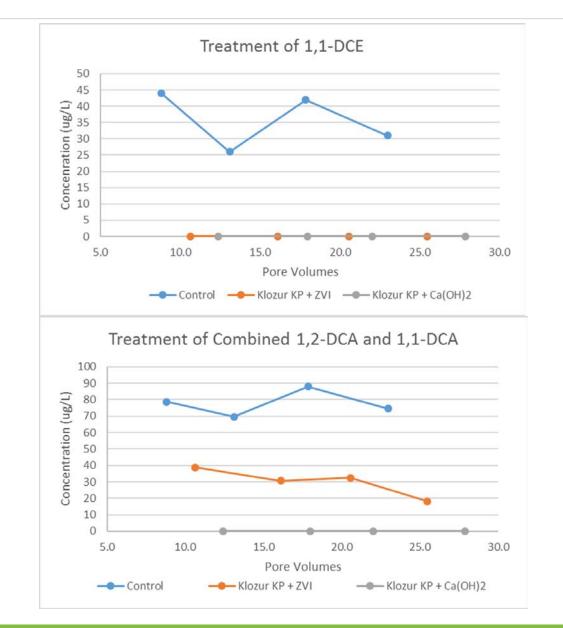


Site 1: New England Superfund Site

- Consultant: Weston Solutions
- Former chemical waste storage and bulking facility
- Residual 1,4-dioxane and 1,1,1-Trichloroethane (1,1,1-TCA) daughter products
 - 1,1-Dichloroethane (1,1-DCA)
 - 1,2-Dichloroethane (1,2-DCA)
 - 1,1-Dichloroethene (1,1-DCE)
- Soil matrix of clay till was bench tested. Site includes sand lenses.

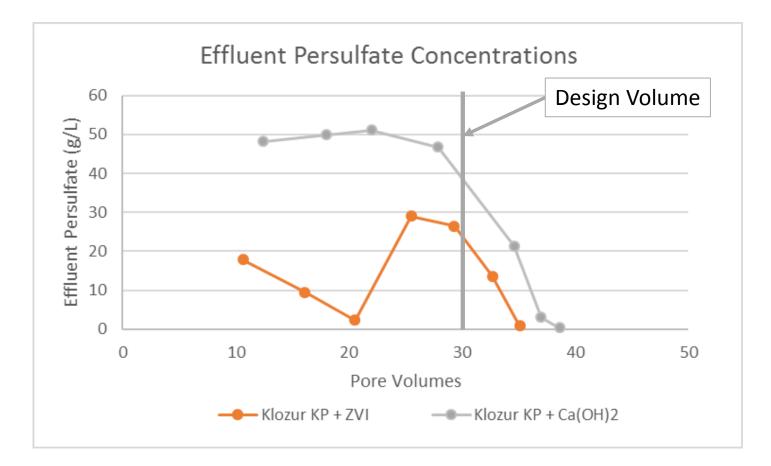
Site 1: Treatment of 1,4-Dioxane

PeroxyChem


1,4-Dioxane treated by oxidative pathway

- Treated to below the detection limit by both ZVI and hydrated lime activated persulfate
- Persisted for theoretical design period

Site 1: Treatment of CVOCs


- DCE can be treated by both oxidative and reductive pathway
- DCAs are primarily treated by a reductive pathway
 - Treated to below the detection limit by hydrated lime activated persulfate
 - Partial reduction by ZVI activated persulfate

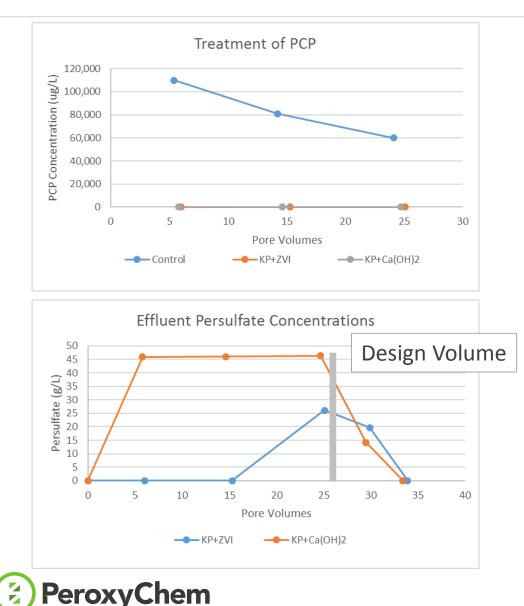
PeroxyChem

Site 1: Extended Release of Klozur KP

- Klozur KP persisted in both reactors for longer than the design period
 - Hydrated lime lasted longest
 - ZVI activation showed more consumption of persulfate, but effective treatment for design life

Site 1: Summary

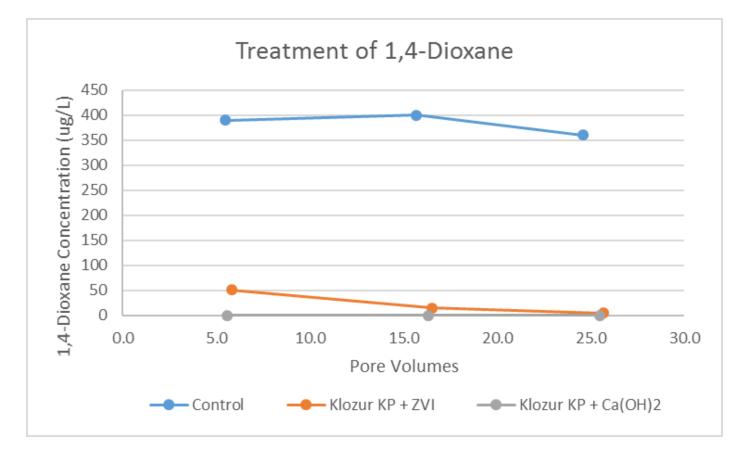
- Klozur KP:
 - Persisted as designed
 - Alkaline activation
 - Oxidative and reductive pathway
 - Treatment of all three contaminants
 - ZVI activation
 - Primarily oxidative pathway
 - Treatment of 1,4-dioxane and DCE
 - Limited treatment of DCA
- Evaluating natural attenuation. Treatment with Klozur KP is an alternative if natural attenuation is not successful



Site 2: Pacific Northwest Site

- Consultant: ERM
- Former wood treatment facility
- Residuals include PAHs, TPH, and Pentachlorophenol
 - Pentachlorophenol (PCP) primary COC at proposed PRB boundary
- Soil matrix: Sand lens below a confining silt lens

Site 2: Treatment of Pentachlorophenol

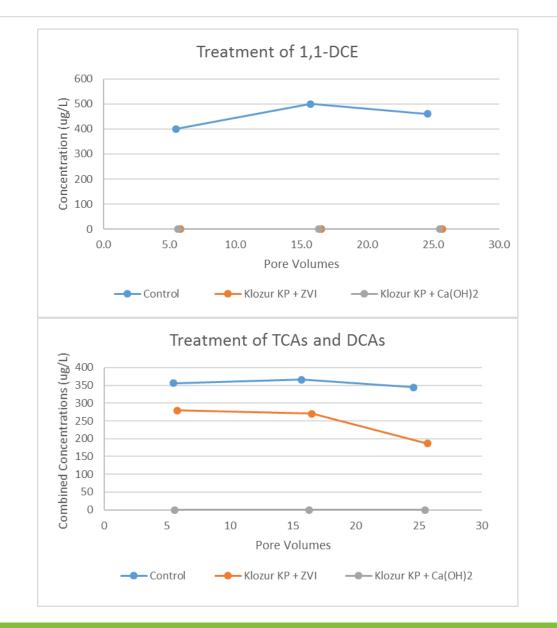

- Concentrations reduced by greater than 99.9% passing through both ZVI and hydrated lime activated persulfate systems
 - Influent was spiked
- Treated via oxidative and reductive pathway
 - Reductive pathway beneficial in dechlorinating PCP
- KP persisted to design volume
- Field pilot test on going September 2018

Site 3: Former Industrial Facility in the Northeast

- Consultant: AECOM
- Residual 1,4-dioxane, TCA, and TCA daughter products
 - 1,1,1-Trichloroethane and 1,1,2-Trichloroethane (TCAs)
 - 1,1-DCA and 1,2-DCA
 - 1,1-DCE
- Silty soils with sand lenses

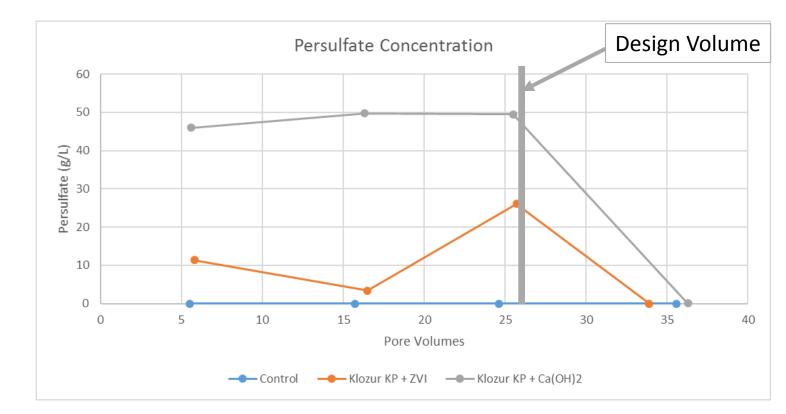
Site 3: Treatment of 1,4-Dioxane

1,4-Dioxane treated by oxidative pathway

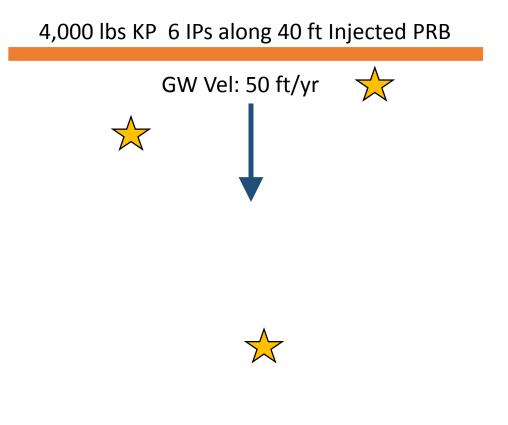

- Treated to below the detection limit by hydrated lime activated persulfate
- Up to 98.7% reduction in column activated with ZVI

Site 3: Treatment of CVOCs

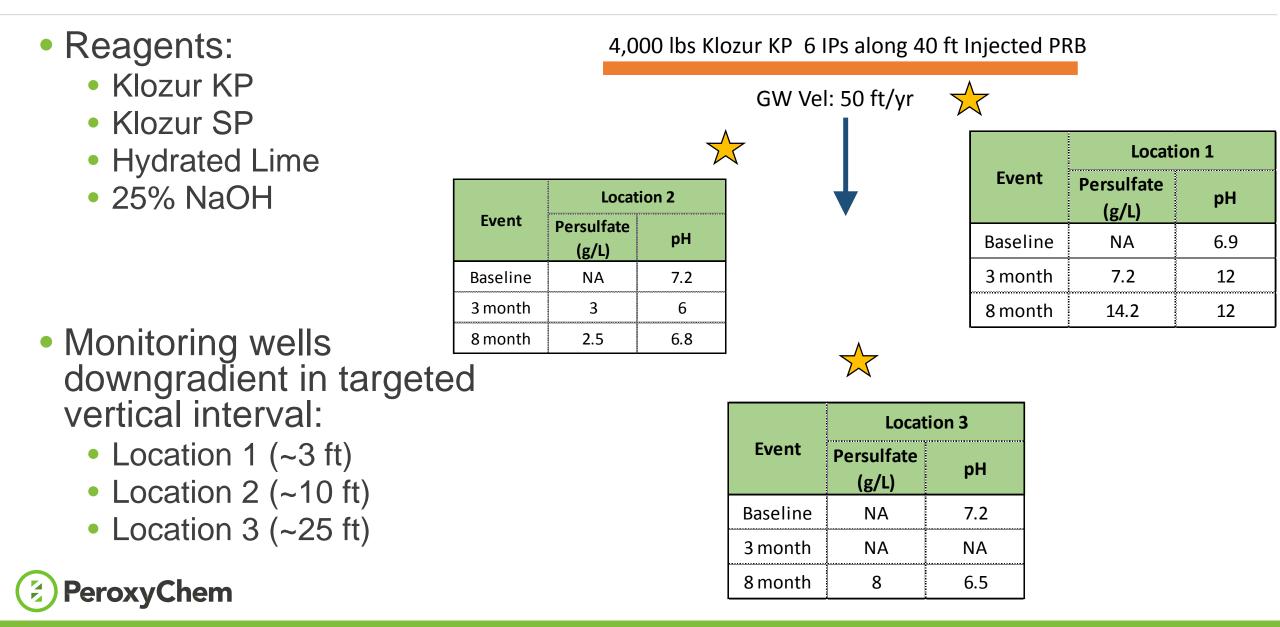
- DCE can be treated by both oxidative and reductive pathway
- TCA/DCA are primarily treated by a reductive pathway
 - Treated to below the detection limit by hydrated lime activated persulfate
 - Partial reduction by ZVI activated persulfate


PeroxyChem

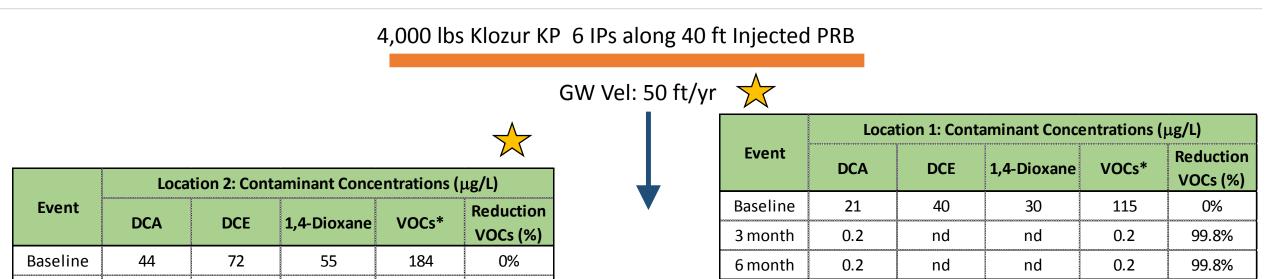
Site 3: Extended Release of Klozur KP


 Klozur KP is thought to have persisted in both reactors for longer than the design period

PeroxyChem


Site 3: Pilot Study

- Pilot Conducted Early December 2017
- Injected PRB (40 ft)
 - Solid slurry
 - 6 DPT points
 - 20 to 30 ft bgs
 - Designed for 6 month persistence



Persistence and Distribution

Site 3: Treatment

* Detected VOCs not including acetone

	Location 3: Contaminant Concentrations (μ g/L)				ıg/L)
Event	DCA	DCE	1,4-Dioxane	VOCs*	Reduction VOCs (%)
Baseline	89	270	200	610	0%
3 month	46	82	69	216	65%
6 month	63	30	110	230	62%

* Detected VOCs not including acetone

10

16

11

nd

nd

16

3 month

6 month

* Detected VOCs not including acetone

86%

82%

26

34

Site 3: Summary

- Bench test:
 - Successful treatment in columns
 - Klozur KP persisted as expected

Full Scale:

Implemented August 2018 Three transections Designed to last ~1 yr

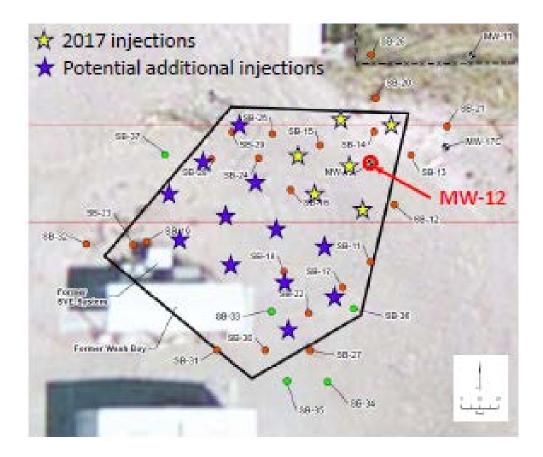
• Pilot study:

- Klozur KP persisted longer than designed (safety factor + lower temperature)
- Resulted in 99-100% reduction at PRB, less reduction as you move downgradient from PRB

Oxidative and reductive pathways observed in field

 1,4-dioxane and TCA/DCA treated in a single application

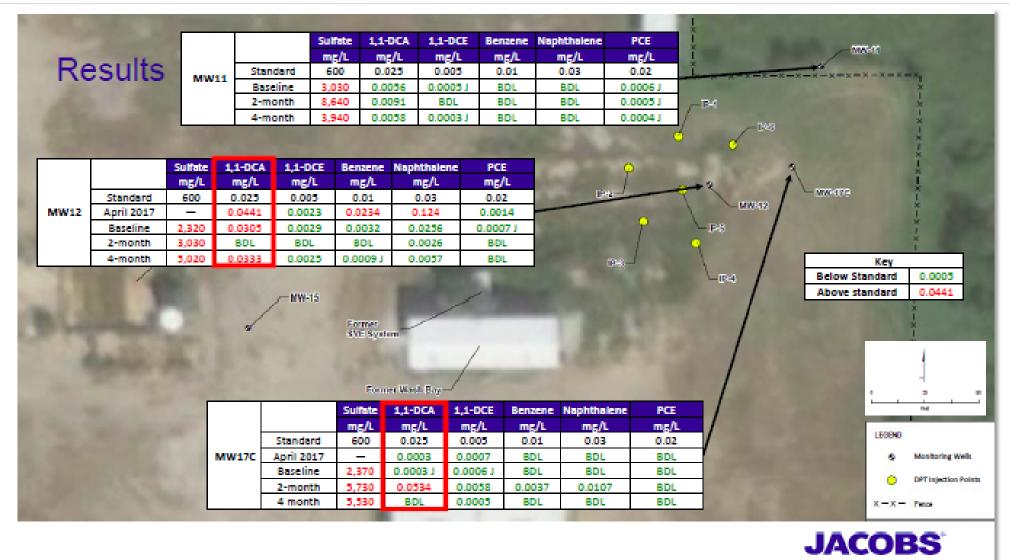
Site 4: Southwest USA


- Consultant Jacobs
- Presented Session B9 Battelle Palm Springs (2018)
- Former oil well servicing facility
- Prior remedies sufficiently treated most of the site
 - Source: Excavation and SVE
 - Plume: Recirculation with P&T and ISCO
- Low permeable soils (silt, silty clay, clay) with gypsum/carbonate rubble

- Polishing Application in Source Area: Concentrations above goals persisted at MW-12
 - DCA, DCE, PCE, Benzene, and Naphthalene
- Goal: No further Action
- Bench
 - 2 g Klozur SP/Kg soil
 - Very high base buffer capacity
 - Selected iron activated persulfate (IAP)
 - ERD following if needed for DCA


Site 4: Field Application Design

- Work completed by FRx
- 24 fractures (4 fractures per location)
 - Klozur SP: 1,800 lbs
 - Klozur KP: 9,000 lbs
 - Chelated Iron
 - Carrier fluid
 - Chase water



Site 4: Field Application

Site 4: Results

PeroxyChem

Site 4: Summary

- Successful targeting of
 - Low concentration COCs
 - Low permeable soils
- Rapid application
 - 2 day field event
 - Results favorable at 2 months
- Used

PeroxyChem

- Klozur SP for rapid treatment
- Klozur KP for extended release

- Concentrations of COCs expecting treatment are BDL
- DCA may persist (lack of reductive pathway for IAP)
 - If persists may be polished with ERD/organic substrate

Bench and Case Study Summary

- Klozur KP is an extended release persulfate that is being used for permeable reactive barriers, low permeable soils, and soil mixing
- Extended release of Klozur KP
- Klozur KP and Klozur SP and be combined in a single application to take advantage of their different characteristics
- Alkaline activated persulfate creates oxidative and reductive pathways, which can be used to treat comingled contaminant plumes such as 1,4-dioxane, TCA, and DCAs.

Klozur KP Application Details

- Factors influencing oxidant mass
 - Klozur KP
 - Klozur SP
- Slurry concentrations
- Settling of solid slurries
- General guidance for common applications

Factors Influencing Oxidant Mass

Application area

- Target on soil, groundwater and NAPL
- Non-target on soil
- Safety Factor
- Extended release of persulfate anion with GW flux
 - Dissolve to maintain theoretical solubility limit
 - Influent target demand
 - Influent non-target demand
 - Minimize initial dissolution of Klozur KP
 - Safety Factor

Klozur KP or Klozur SP

Application area

- Target on soil, groundwater and NAPL
- Non-target on soil
- Safety Factor

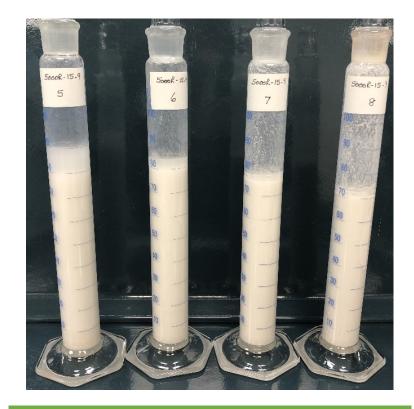
KLOZUR[®]SP

Extended release of persulfate anion with GW flux

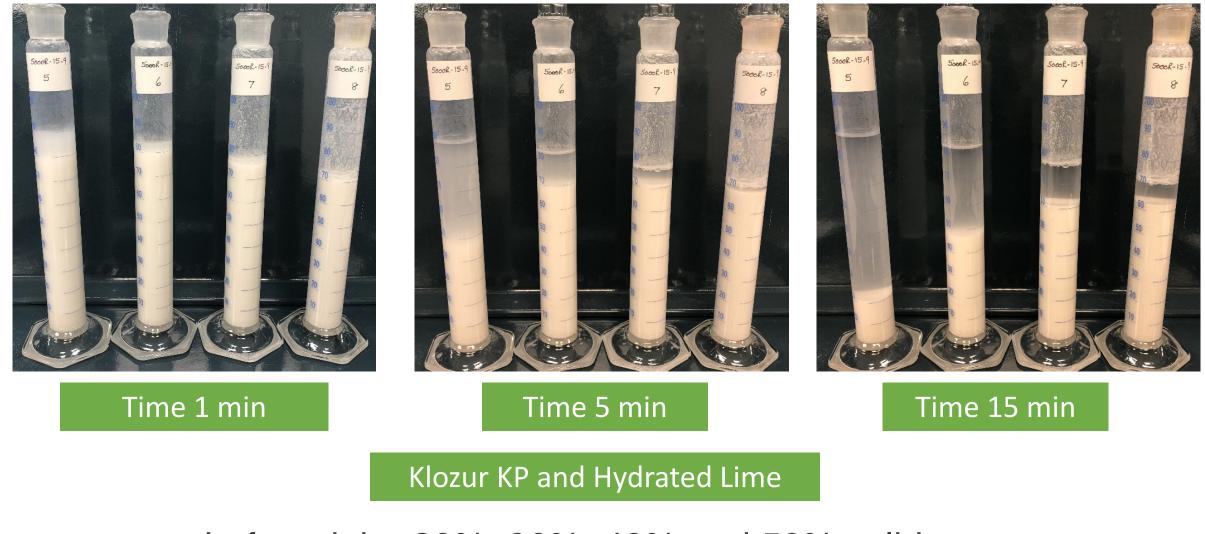
- Dissolve to maintain theoretical solubility limit
- Influent target demand
- Influent non-target demand
- Minimize initial dissolution of Klozur KP
- Safety Factor

Klozur KP Slurries

- Slurries include:
 - Klozur KP
 - Klozur SP
 - Hydrated Lime
- Percent Solids
 - 25 percent to 50 percent
- Small batches. Inject within 4 hrs of batching



Klozur KP Settling Tests


Time 0 Klozur KP Only

Time 1 min Klozur KP and Hydrated Lime

(2) PeroxyChem Left to right: 20%, 30%, 40% and 50% solids

Klozur KP Settling Tests

(2) PeroxyChem Left to right: 20%, 30%, 40% and 50% solids

Permeable Reactive Barriers

Injected PRBs

- Application
 - DPT rods (stingers)
 - Specialized injection tooling
- Application range:
 - Maximum (w/w solids to soil):
 - Sand: ~2.5% (10% PV)
 - Clay: ~1.5 %
 - Typical 0.5-1.5% w/w

• Trench PRBs

- Application
 - Slurries and dry mix
 - Soil mix or sand blend
- Application range:
 - Typically 5-20% reagents
 - Higher possible, but watch for settling
- Trench stabilization
 - May be needed depending on trench characteristics
 - Specialized physical applicators to minimize contact

Soil Mixing

- Klozur SP:
 - Initial treatment
 - 4-8 week persistence typical
 - 25% NaOH or hydrated lime to activate
 - Areas of elevated concentrations
 - ISCO ISS
 - If sufficient Portland cement is added to quickly solidify and dry matrix, Klozur SP is recommended.

- Klozur KP:
 - Extended release
 - Months to years
 - Will dissolve to maintain concentration (persistence depends on dose)
 - Typically for less than 1,000 mg/Kg
 - Will dissolve as oxidant is consumed negating benefit of extended release
 - Hydrated lime to activate

Applications ranges: 1 to 10% w/w typical

Low Permeable Soils

Solid slurry injection

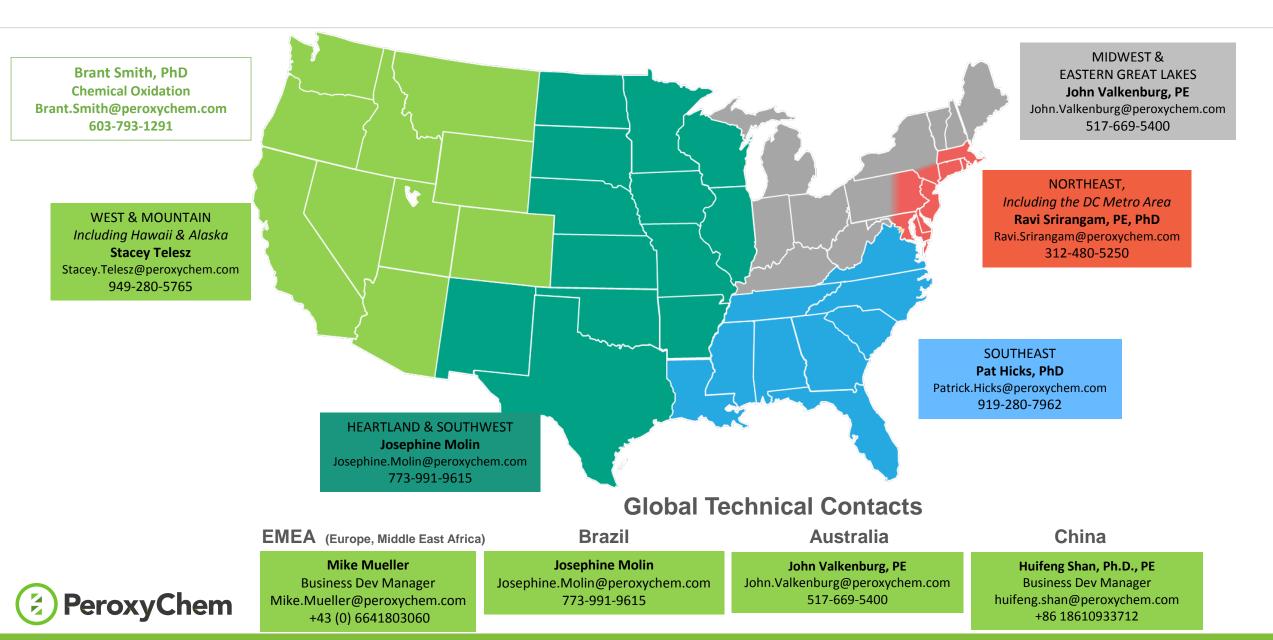
- Klozur SP for initial rapid treatment, migration into preferential pathways
- Klozur KP for extended treatment
- Activator
 - 25% NaOH or hydrated lime for Klozur SP
 - Maintain elevated pH to protect equipment
 - Hydrated lime for Klozur KP

Traditional Klozur SP: Low volume-high concentration application

Difficult to Treat Contaminants

- Extended release may be better for certain contaminants
 - Highly sorbed
 - Low solubility
- Example:
 - PCBs

Contaminant	Solubility (mg/L)	K _{ow}
1,4-Dioxane	miscible	0.53
Benzene	~1,800	135
TCE	~1,300	513
PCBs (1242)	0.24	398,100



Conclusion

- Klozur KP's unique physical characteristics (low solubility) opens ISCO to new types of applications
 - Klozur SP: Source Area
 - Klozur KP: PRBs, low permeable soils, etc
- Builds off same powerful chemistry expanding the versatility of activated Klozur persulfate
- Versatility expanded by activation methods that can create both oxidative and reductive pathways (alkaline, heat, and H₂O₂)

Questions

(E) PeroxyChem

- Original webinar:
 - <u>http://www.peroxychem.com/remedationwebinars</u>
- www.Klozur.com
 - SDS
 - Product Brochure
 - Technical Documentation
 - Application Guide