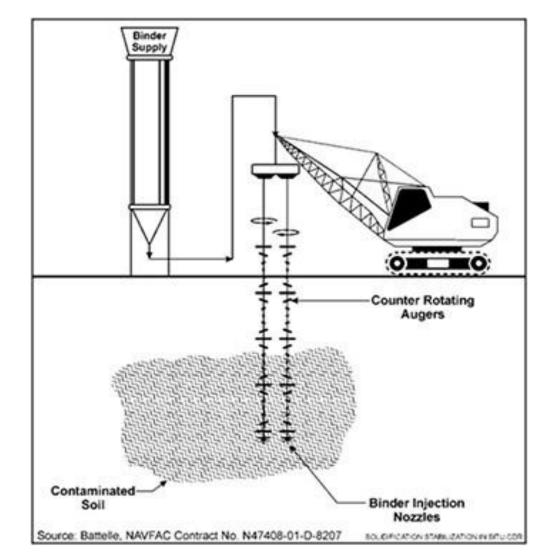
Practical Considerations for Implementing ISCO-ISS: Bench Testing, Design & Field Implementation

Soil & Groundwater Remediation Webinar | May 1, 2024

Presentation Outline

- Technology Overview
 - Combining ISCO with ISS
 - Benefits & Synergies
 - Common Remedial Goals
- Bench Testing & Design Parameters
- Field Implementation
 - Soil Mixing Methods & Limitations
- Application and Performance Monitoring



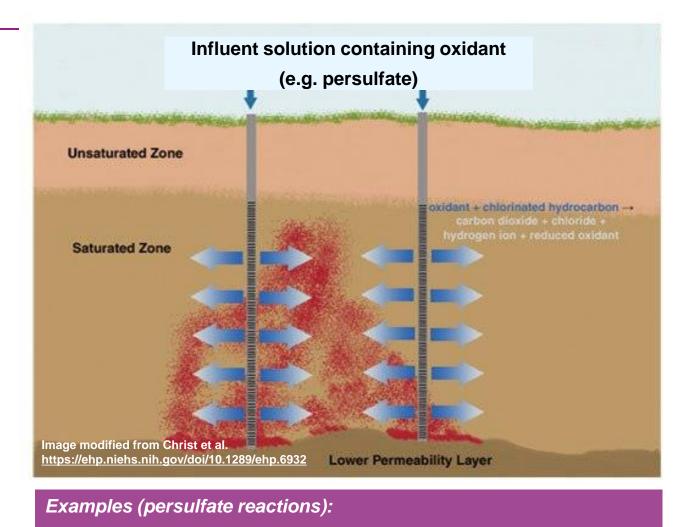
Case Examples

In Situ Solidification and Stabilization

- Use of soil mixing to blend binding agent(s) with contaminated soils:
 - Portland Cement
 - Blast Furnace Slag
- Methods:
 - Stabilization:
 - Chemical processes that reduce leachability
 - Solidification:
 - Decreasing of hydraulic conductivity & effective porosity
 - Increasing compressive strength
- ^a Immobilize contamination in place

Common Objectives of ISS

- 1. Reduced hydraulic conductivity
 - 2-3 orders of magnitude below native soils
 - 1 x 10⁻⁶ cm/sec
- 2. Unconfined Compressive Strength (UCS)
 - "Workable" ~20-60 psi
 - Hardened
 - ISS often targets 50 psi
- 3. Lower contaminant flux and leachate concentrations


General Relationship between Soil Consistency and Unconfined Compressive Strength

S		Unconfined Compressive Strength (UCS) Ranges						
	Consistency	p	si	kPa (KN/m²)				
		Low	High	Low	High			
	Very soft	0	3	0	24			
	Soft	3	7	24	48			
	Medium	7	14	48	96			
	Stiff	14	28	96	192			
	Very Stiff	28	56	192	383			
	Hard	>5	56	>383				
	oical targe kable" soi	-		•				

4

In Situ Chemical Oxidation

- What it is:
 - Oxidants are reagents that <u>accept/take</u> electrons from, or oxidize, contaminants of concern $\rightarrow CO_2$
 - Typically applied via injection or soil mixing
- Objectives:
 - Contaminant destruction / mass reduction
 - Reduced concentrations in soil, groundwater, leachate and vapors

Benzene: $15 S_2 O_8^{-2} + C_6 H_6 + 12 H_2 O \rightarrow 6 CO_2 + 30 HSO_4^{-1}$

PCE: $2 S_2 O_8^{-2} + C_2 CI_4 + 4 H_2 O \Rightarrow 2 CO_2 + 4 CI^- + 4 H^+ + 4 HSO_4^{-1}$

Klozur[®] Persulfate Degradation Pathways / Contaminants Treated

Oxidative	Either	Reductive	
	PCE, TCE, DCE and VC		
Petroleum Hydrocarbons	Chlerchenzence	Carbon Tetrachloride	
Gasworks Residuals	Chlorobenzenes	1,1,1-Trichloroethane	
BTEX	Phenols	Dichloroethanes	
DILX	Select Pesticides		
PAHs	Salaat Eluarinated Compounds	Select Pesticides	
Oxygenates	Select Fluorinated Compounds	Select Energetics	
1 A Dievene	PCBs		
1,4-Dioxane	Select Energetics		
Activation I	Methods: Alkaline, Hydrogen Peroxide, and	d Heat	
Activation Method: Iron	n Chelate		

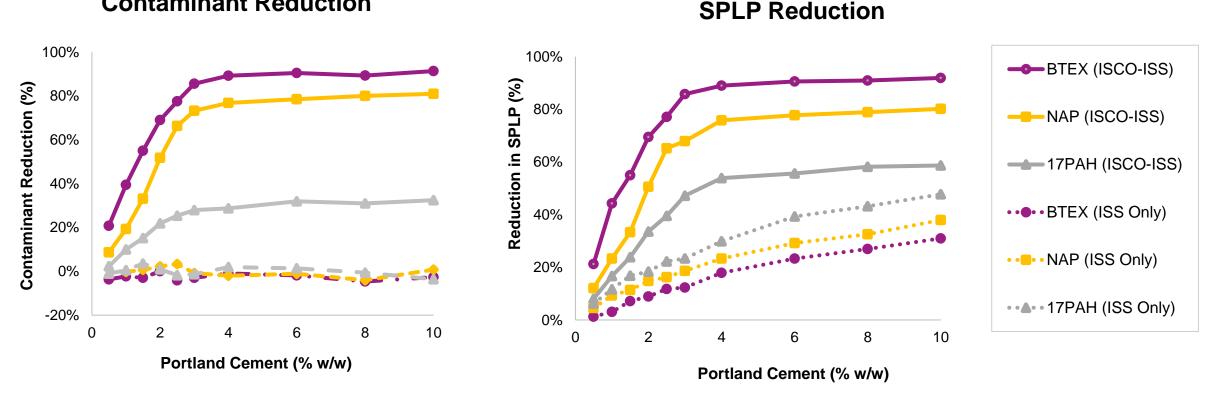
- ISCO:
 - Multiple applications may be needed for heavily contaminated sites → cost prohibitive
 - Contaminants that sorb strongly to the soil (low partitioning in water / high K_{oc} value) more challenging to treat, sometimes requiring multiple applications


- ISS:
 - Contamination is left in place maintaining environmental liability
 - Addition of binders can cause soils to swell (increase in volume), which then requires treatment or disposal
 - More mobile contaminants (low K_{oc}) more difficult to stabilize / requires higher dose binder

Combining the Technologies: ISCO/ISS

ISCO (sodium persulfate) and ISS reagents applied together in single application:

- More soluble (mobile) fraction preferentially treated via oxidation
- Remaining heavier contaminant fractions stabilized


Soil mixing using excavator with mixing attachment

Soil mixing using large diameter augers

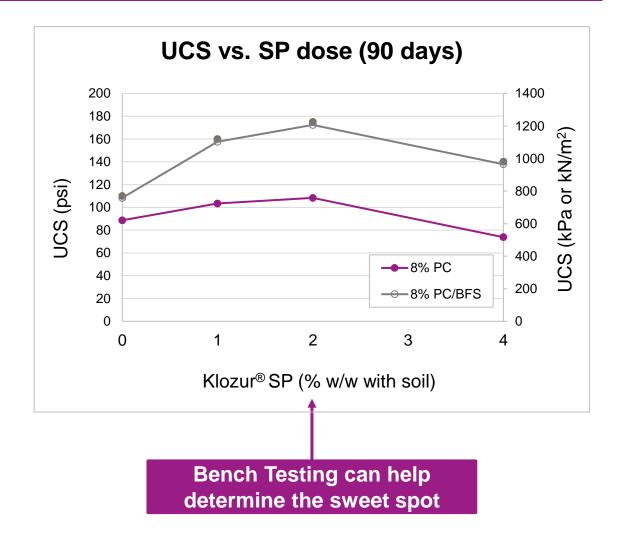
Synergistic benefits with combined approach

Contaminant destruction can result in lower leachate concentration compared to ISS Only

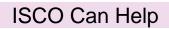
Contaminant Reduction

2:1 Ratio of PC:SP

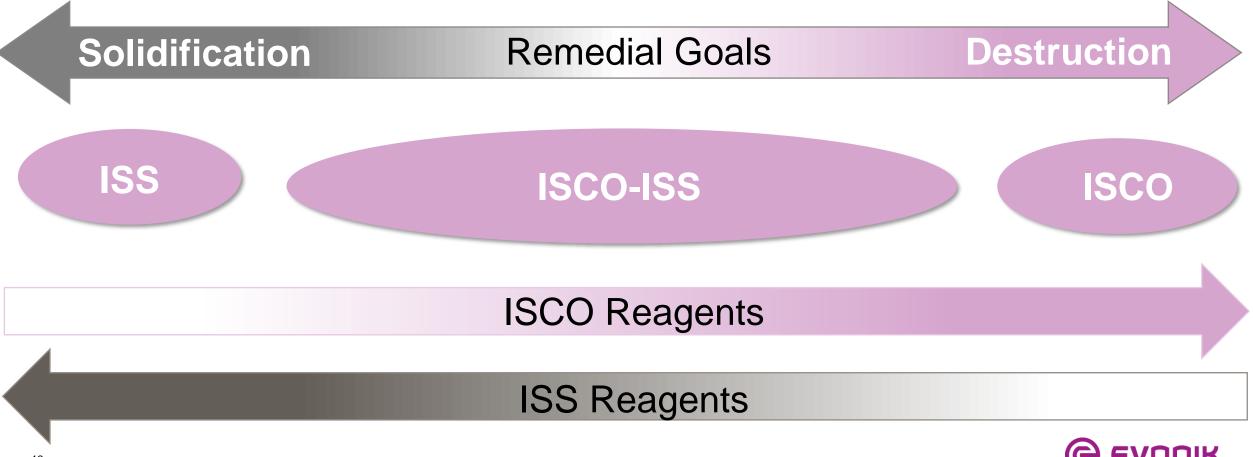
>37,000 mg/Kg MGP Residuals


Reference: Srivastava, V.J., Hudson, J.M., and Cassidy, D.P., (2016b) "Achieving Synergy between Chemical Oxidation and Stabilization in a Contaminated Soil," Chemosphere, 154, 590-598

Synergies: Improved UCS


- Persulfate addition can improve UCS to a certain point
 - Lowering binder requirements to achieve remedial goals
 - Less soil bulking \rightarrow Cost savings

Klozur [®] SP	8%	PC	8% PC/BFS		
(% w/w soil)	Day 90 UCS (psi)	% of ISS only	Day 90 UCS (psi)	% of ISS only	
0	90	100%	110	100%	
1	105	117%	160	145%	
2	110	122%	175	159%	


	ISS		ISC	0
HYDRAULIC CONDUCTIVITY		FLUX REDUCTION - LEACHATE TARGETS		CONCENTRATION TARGETS (SOIL/GW)
UNCONFINED COMPRESSIVE STRENGTH, UCS		VAPOR INTRUSION - PORE GAS TARGETS		CONTAMINANT MASS REDUCTION

Remedial Goals and Reagent Ranges

ISCO and ISS reagent doses can be varied to achieve a variety of remedial goals

Benefits of adding ISS to ISCO applications:

- Improved soil stability allowing for site activities and redevelopment soon after the application.
- Low-cost alkaline activators for Klozur[®] persulfate.

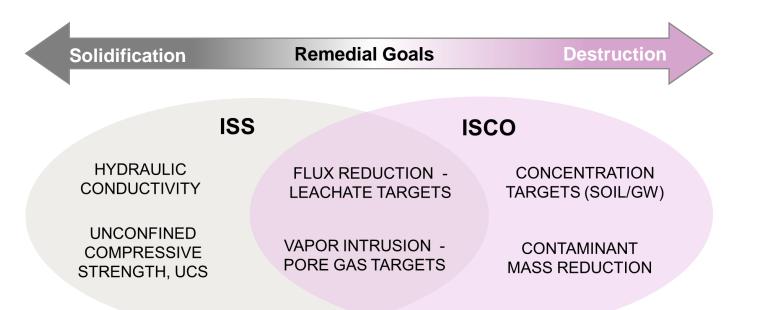
Benefits of adding ISCO to ISS applications:

- Small additions of ISCO reagents can lower the amount of ISS reagents needed to reach UCS and K targets, resulting in less soil bulking and disposal costs.
- Lower long-term risk due to contaminant mass reduction.
- Faster plume reduction due to reduced flux.

ISCO-ISS Bench Testing & Design Parameters

What Data is Needed to Screen Sites

- Site Access
 - ISCO-ISS applied via soil mixing or potentially jet grouting → need physical access
- Can soils be mixed?
 - Overburden soil / no boulders
- Can contaminants be treated?
 - Limits to ISCO (~10,000 mg/Kg)
- Remedial Goals
 - Can goals be achieved with ISCO-ISS
- Bench scale testing highly recommended to optimize dosages to meet project goals


Contaminants (Soil & GW) Soil Type **Moisture Content** Dry Bulk Density Boulders (size) Native UCS Fraction Organic Carbon on Soil Sodium/Potassium/Sulfate lons Soil Oxidant Demand (SOD) Electric Conductivity Oxidation-Reduction Potential pН

Dissolved Organic Carbon

Bench Study Scope Varied Based on Site-Specific Goals

- Bench studies are designed to confirm site goals and generate design parameters
- Scope varied based on site specific goals

Common Analysis

- Soil Oxidant Demand, SOD
- Base Buffering Capacity, BBC
- Soil stability, UCS
- Hydraulic Conductivity, K
- Soil Analysis
- Leach Testing
- Soil Volumetric Expansion

ISCO-ISS Bench Testing – Typical Outline

- Baseline Analysis:
 - Soil Analysis (contaminants)
 - Design Parameters: SOD and BBC

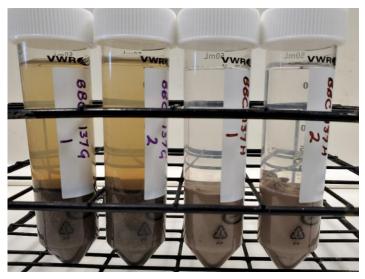
Helps estimate Klozur[®] SP dosing requirements based on destruction targets

Phase I

 Screen larger set of test conditions for UCS using pocket penetrometer Helps determine appropriate dose binder for select persulfate dosages based on stability targets

Phase II

- A more limited number of test conditions selected for the full treatability study based on Phase I results
- Analysis varied depending on project goals and needs


Baseline Analysis and Preliminary Dosing Estimations

Contaminant Concentrations:

- Soil analysis (duplicate)
- Leachate concentration (optional)
- Base Buffer Capacity (BBC) Test
- Amount NaOH needed to raise pH of soil to 10.5

Soil Oxidant Demand (SOD) Test / Klozur Demand Test (KDT)

- Batch reactors set up with soil + persulfate solution + NaOH activator
- Uncontaminated soil preferred for background SOD
- SOD <u>estimated</u> based on persulfate consumption after 7 days

SOD Test Set-Up and Example Results

1	High pH	10	30	t=0 hrs. 15	t=48hr 0.63	t=168 hr 1.02
Sample ID	Trial Activator	Soil Wt. (g)	Water Vol. (mL)	Klozur Dosage (g/Kg Soil)	Consu	ur SP Imption sulfate / y soil)

SOD will in part be a function of dose and time assessed – following the same procedure allows us to compare different soils & flag anomalies

Example Preliminary Dosing Estimations

- Example Baseline Results:
- COC: 1,000 mg/kg
- SOD: 1 g persulfate per kg soil

- Degradation ratio (example):
- -- 15 g SP per g COC*

*Varies by COC and concentration

Klozur[®] SP dosing estimation (g/kg soil) = COC Conc x Deg. Ratio + SOD

Example: 1,000 mg/kg COC x 15 g/g ratio + 1 g/kg SOD = 16 g/kg = 1.6% SP by soil mass

- Adding Safety Factors (SF):
- Low Dose (~1x) \rightarrow 1.5% by soil mass
- Medium Dose (~2x) \rightarrow 3% by soil mass
- High Dose (~3x) \rightarrow 5% by soil mass

Adjust SF to consider destruction goals – could be less than 1x

Phase I – Screening Level UCS

Identify blends that will solidify within the target range

- Test Conditions (10-15 blends):
 - 2-3 concentrations of Klozur[®] SP, each with 3-4 binder dosages
 - o May also include binder only controls
- Sample evaluation:
 - Samples analyzed using in house pocket penetrometer + visual inspection
 - Two sampling time points, usually Day 7 and Day 14 or 28 (if time allows)
 - If solidification is going well: Day 7 is typically ~30% of long term UCS and Day 28 is typically ~50-75% of long term UCS

Phase I sample set-up

Sample evaluation using penetrometer

Phase II – Treatability Testing

- Typically, 5 to 6 test conditions are selected for the full treatability testing based on their performance in Phase I
- Phase II tests are varied depending on site remedial goals, client wishes, and client budget, but it can include:
 - UCS (28 / 56 / 90 days) external analysis
 - Hydraulic conductivity (28 / 56 days)
 - Contaminant concentrations on soil (28 days)
 - Leach Testing
 - Vapor Intrusion (similar to leach test but analyzing gas phase)
 - Volumetric Expansion

Tedlar bags set up for shipment to accredited lab for soil analysis and cylinders for leach testing and UCS analysis

Leaching Tests

TCLP (Toxicity Characteristic Leaching Procedure; SW-846 Method 1311)

- Meant to emulate municipal landfill leachate
- Single point leach test. Uses acetic acid

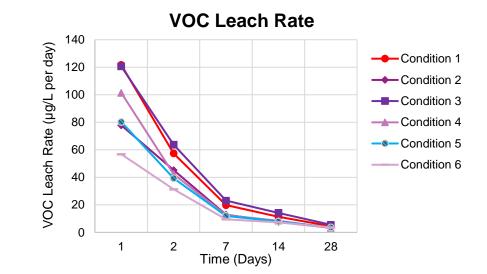
SPLP (Synthetic Precipitation Leaching Procedure; SW-846 Method 1312)

- Meant to emulate acid rain (west and east of Mississippi)
- Single point leach test. Uses nitric and sulfuric acid
- LEAF (Leaching Environmental Assessment Framework; SW-846 Method 1313-1316)
 - Multiple point leach test (multiple pore volume flushes and contact times)
 - Multiple methods with varied test conditions
 - Does not grind sample

TCLP and SPLP

- Both method grind samples to less 1 cm in size, negating benefit of solidification
- Acid addition may not be typical of site groundwater

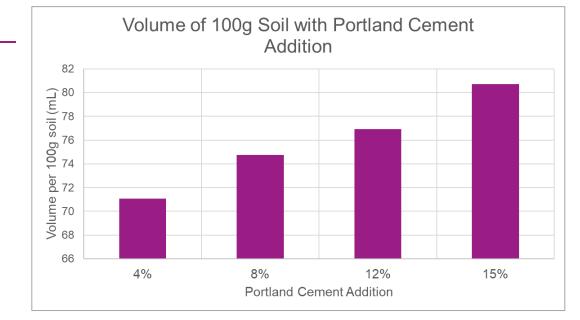
LEAF

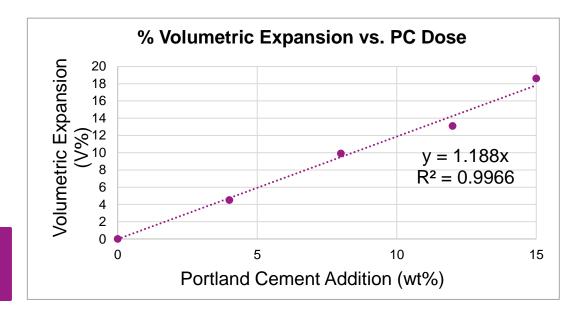

 Can be expensive and often requires significant time

Leaching Tests

Evonik Tank Method developed reviewing various other methods

- Solidified matrix is suspended in tank
- GW is exchanged at different time intervals (1, 3, 7, 14, and 28 days)
- GW sampled for dissolved COCs at each exchange
- Leachate concentrations presented on ug/L-day
- Rate of diffusion from matrix based on surface area can be modeled

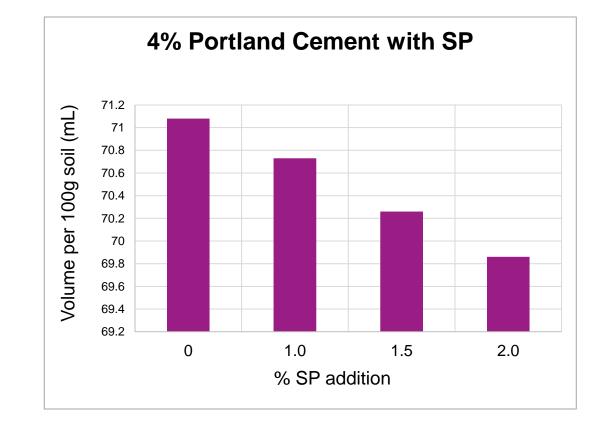




		gent sing	VOC Leaching Interval Sampling				
	SP	PC	T-01	T-02	T-03	T-04	T-05
Condition	%	%		ug	g/L per day		
0 (Control)	0%	0%	141,408				
1	1.0%	4.0%	122	57	20	11	4.5
2	1.0%	6.0%	78	45	13	7.5	3.4
3	2.0%	4.0%	121	64	23	14	5.5
4	2.0%	6.0%	101	42	13	8.4	3.3
5	3.0%	6.0%	80	39	12	8.0	3.6
6	4.0%	7.0%	57	31	9.5	7.3	3.5

Volumetric Expansion Test

- The addition of binder will cause the monolith to increase in volume
- Depending on site, excess swell may need to be removed from site
 - Can be significant cost factor
- For soils tested
 - Rate increased at ~1.2x V% monolith per W% PC added
- If ISCO-ISS can be used to achieve project goals with less binder than swell should be decreased



~1.2x V% monolith per W% PC added

Synergies: Reduction in Swell/Fluff

- Second mechanism:
 - Soils tested had decreasing volumes with increasing SP addition for same amount mass of binder
 - Up to ~40% reduction in swell observed with 2% Klozur SP addition

Example: If you had 20% swell without SP, you may have 12% swell with 2% SP for the same PC addition

Soil Mixing Implementation Methods

Common Soil Mixing Methods

- Bucket Mixing using Excavator
- Rotary Tools / Mixing Attachments
- Large Diameter Augers

Acknowledgements:

- Tony Moran, Entact
- Bill Lang, Lang Tools
- Kim Jensen, Arkil
- Stefan Dahlin, SMG
- Nathan Coughenour, Geosolutions
- Vito Schifano, Formerly of Ladurner

Rotary Mixing Attachment

Large Diameter Augers

Bucket Mixing

- Can reach up to 6 m / 20 ft below work pad (limit to length of excavator arm)
- Reagents applied dry at the surface → Best suited for depths up to 2.5 m / 8 ft for homogeneous mixing
- May need a rotary tool as a "polishing" step to improve blending

Adding Dry Reagents.

Blending & addition of water.

Wet mixing completed.

Area after backfill.

Photo Documentation Courtesy of Trident

Rotary Mixing Attachments

- Various tools in the market (Lang Tool, Allu, Alpine, etc.) with varying penetration depths (up to ~26 ft / 8 m)
- Can apply in lifts to reach greater depths
- Reagents injected via mixing head more homogeneous placement
- Hard soil may require pre-loosening with excavator

Lang Tool's Dual Axis Blender

Lang Tool's Deep Digger Blender

Allu Mixer attachment

Large Diameter Augers

- Can extend to depths of 60+ feet (20+ m) below the work pad
 - >60 ft / >20 m is possible but increasingly specialized, consult contractors
- Auger diameter may range from 3 to 11+ feet in diameter
 - Varied based on soil density, strength, depth, etc.
- Increasingly cost-effective, especially for larger sites

ISCO-ISS Applied using Large Diameter Augers in Bolzano, Italy

Video courtesy of Ladurner Bonifiche S.r.I.

Sufficient Moisture is important!

- Typically target approximately ~1.5x times full saturation
- Visually want the soil to look soupy with some standing water upon application
- Both Portland cement and Klozur[®] SP consume water as they react

Video courtesy of Lang Tool

Application & Performance Monitoring

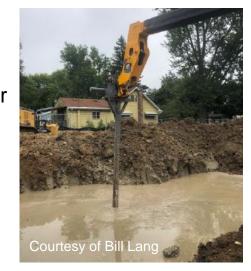
Application Monitoring

- Goal is to confirm uniform reagent distribution:
 - Persulfate field test kits
 - Conductivity, pH and ORP should provide distinctive indicator of reagents
 - Analysis: sodium, calcium, sulfate
 - Ensure soil is adequately homogenized (avoid large clumps)
 - Moisture content

Post Application Performance Monitoring: Parameters

• Key Parameters to monitor:

Parameter	Recommended Method	Benefits	Recommended Interval	Option Intervals
Unconfined Compressive Strength (UCS)	ASTM D1633	Quantifies solidification Can be done in laboratory or field. Field tests very rapid and inexpensive	28 and 90 days	7, 28, 56, and 90 days
Hydraulic Conductivity	ASTM D5084	Key flux objective	>28 days	
Contaminant Concentration on Soil	Contaminant dependent		>14 days	1, 3, 7, 14, 28, 56 days


- Optional Parameters to monitor (depending on site goals):
 - Porosity
 - Leachate
 - Vapor impacts

Post-Application Performance Monitoring: Sample Collection

- Two primary methods of Post-Application Sample Collection:
 - 1. Collect samples using tool attached to excavator arm
 - Collect a slurry at depth
 - Slurry poured into molds and allowed to cure
 - Samples analyzed at times taken from molds

- 2. Conventional soil sampling methods after solidification:
 - Target solidification is typical of stiff clay
 - After successful solidification, drive sampling equipment onto target area to collect samples

Step 2:

Sieve material to remove rock and then add to molds

Step 3:

Allow molds to cure for selected duration in cooler

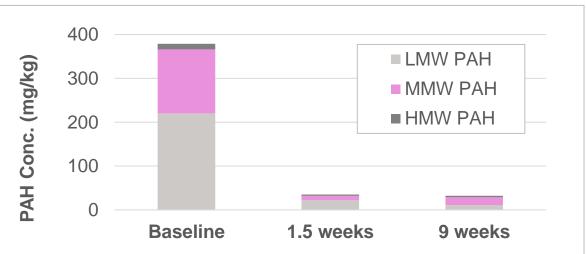
Case Studies

0 ΠΙΚ E\ Leading Beyond Chemistry

Former MGP Site in Stockholm being Redeveloped into Residential Area

Client: City of Stockholm Contractor: PEAB / ARKIL Treatment Volume: 50,000

m³ clay layer


Remedial Goals: Prevent vapor intrusion to planned buildings via combination of stabilization and contaminant reduction

> Reagent dose: •1.8wt% Klozur[®] SP •4-8 wt% Slag cement

Klozur[®] SP, cement and water applied using large diameter auger

- ~95% reduction in PAH-L
- ~90% reduction in PAH-M
- ~80% reduction in PAH-H
- Higher % reduction in lower molecular weight fractions.
- All samples below remedial goal of 250 mg/kg

Reference: Uppföljning av föroreningshalter i pelare efter stabilisering och kemisk oxidation av lera (ISS-ISCO), Golder, Jan 2022

ISCO-ISS Successfully Remediates PCE DNAPL at Former Dry Cleaner in Residential Neighborhood

Location: Former Kent Cleaners, Lansing, Michigan Lead Consultant: Hamp Mathews & Associates

Contractor: Lang Tool

Regulator: EGLE

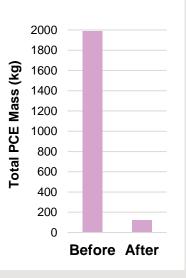
Contaminants: PCE (up to >1,000 mg/kg)

Goal: Reduce vapor intrusion risk

Treatment volume: 12,354 cy soil

Reagent Dose (w/w soil):

- Klozur[®] SP: 1-2% (440K lbs)
- Portland Cement: 4% (1.6M lbs)



Results

- 94% reduction in PCE mass
- UCS of 25-50 psi (Day 60)
- Underlying GW conc. reduced by 90 to 99%

Saved client >\$2.5 Million compared to excavation estimate

ISCO-ISS Successfully Remediates TCE Contaminated Soils Achieving Clean-Up Goals in One Week

Site: Former Industrial Site / Redevelopment

Location: Västerås, Sweden

Contaminants: TCE source area (up to >500 mg/kg)

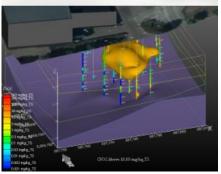
Lead Consultant: Wescon

Soil Mixing Contractor: SMG

Goal: Reduce TCE mass by 50%

Treatment volume: 600 m³ soil

Reagent Dose (w/w soil):


- Klozur[®] SP: 0.8% (8 tons)
- Portland Cement: 7% (70 tons)

Results:

- Goals reached after 1 week and confirmed after 5 weeks
- The stability of the soil was improved
- Infrastructure was minimally affected

Significant cost savings (~70%) relative estimated excavation and disposal costs

	Baseline: CVOCs before treatment	Results: CVOCs 5 weeks post treatment	Reduction
Maximum conc (mg/kg)	542	16.5	97%
Average conc (mg/kg)	45	4.5	90%
Estimated CVOC mass (kg)	35-40	7-9	74 to 83%

Summary

- ISCO-ISS is combined remedy of two established technologies
 - Single application
 - Treat/degrade significant portions of contaminant mass
 - Residual is solidified in a monolith
 - Several synergistic benefits:
 - Higher UCS, lower leachate, lower hydraulic conductivity
 - Less soil bulking can decrease project costs
 - Site ready for redevelopment/access shortly after application

Bench studies can help optimize the dosages of ISCO and ISS reagents

Thank you!

Questions?

Josephine Molin

Technical Manager, ISCO Soil & Groundwater Evonik Corporation E. Josephine.molin@evonik.com

Evonik Corporation Soil & Groundwater Remediation remediation@evonik.com www.evonik.com/remediation

