

Treatment of Heavy Metals in Groundwater and Soil with MetaFix[®] and EHC[®] Reagents

Alan Seech Ph.D. PeroxyChem Environmental Solutions Corona Del Mar CA

PeroxyChem is a company of Evonik Industries AG

Agenda

- MetaFix[®] reagents: characteristics, dosage, application methods
- Metals Treatment Chemistry: compare & contrast chemical fixation with alkaline precipitation methods
- Bench-scale Optimization Testing: Why, where, how, time & cost
- Example Results from Bench-scale Testing
- Case Studies: Soil and Groundwater Treatment
- Questions & Answers

MetaFix® Reagents

- MetaFix[®] Reagents are fine-grained, injectable, and neutral pH
- Designed to remove soluble heavy metals using chemical reduction, precipitation, coprecipitation, and adsorption
- Not dependent on biological sulfate reduction or carbon metabolism
 - performance is not inhibited by high microbial toxicity (e.g., alkalinity, acidity, salts, high COC concentrations)
- Contain iron oxides, iron sulfides, ZVI, ±carbonate, ±phosphate, and ±activated carbon

MetaFix® Mechanisims

- Primary treatment mechanism is conversion of aqueous heavy metals to low solubility and pH stable mineral precipitates and coprecipitates
- Secondary mechanism is adsorption of soluble heavy metals on iron oxides, iron sulfides, ZVI corrosion products, and activated carbon
- Subject to the metals needing treatment we also use carbonate and phosphate precipitation
- Powdered activated carbon may be added to ensure removal of organically-complexed heavy metals (i.e., methyl mercury and organo-arsenic compounds)

MetaFix® Mechanisms

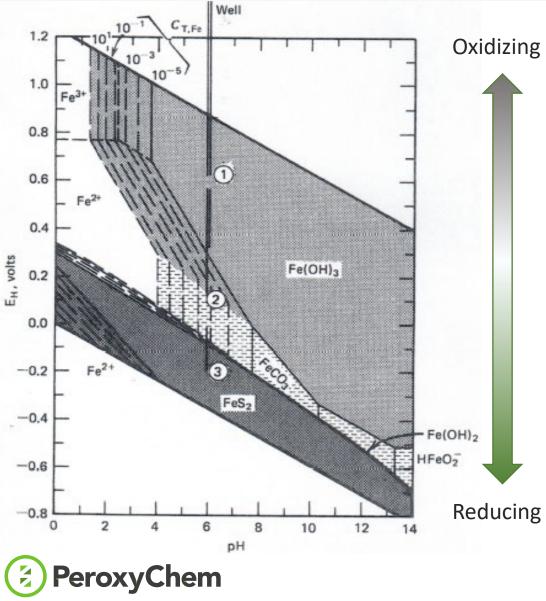
Metal	Precipitation as Iron-Metal- Oxyhydroxides	Precipitation as Metal Sulfides/Iron Metal Sulfides	Adsorption on and Co-precipitation with Iron Corrosion Products	Precipitation as Metal Carbonates and Phosphates	Adsorption of organo-metal species
As (III <i>,</i> V)		•	•		•
Cr(VI)	•		•		
Pb, Cd, Ni, Zn	•	•	•	•	•
Cu	•	•	•		
Se	٠	•	•		
Hg		•	•		•

PeroxyChem

Application of MetaFix® Reagents

Low Dosage Rates

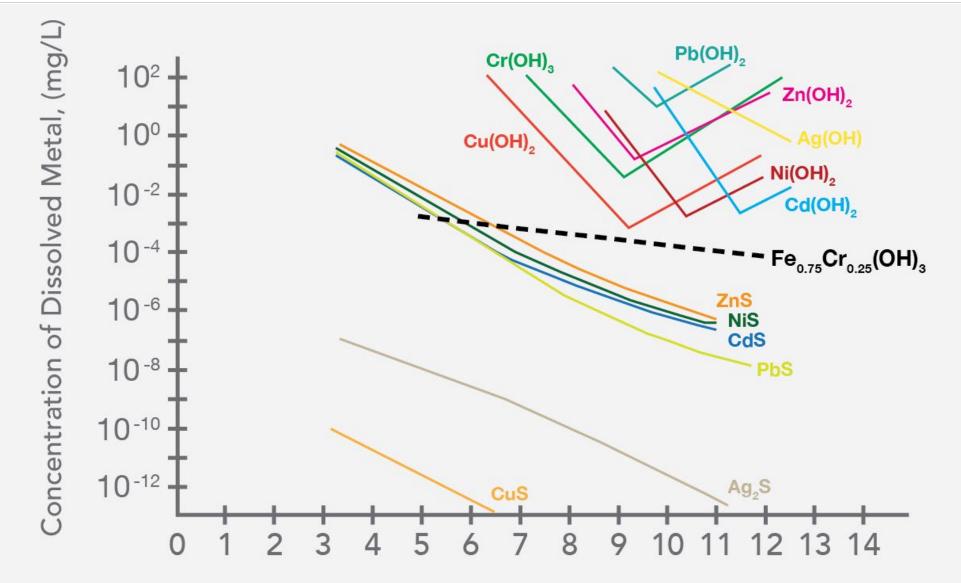
- 0.25% 4.0% (w/w) for soil
- 0.1% 1.0% (w/w) for groundwater
- Application by soil mixing, trenching, or injection (25% 40% solids) aqueous suspension
- Low cost treatability testing to determine dosage and enable custom formulation (\$2,500)



Chemistry of Heavy Metal Precipitation

- Mechanisms of heavy metal precipitation are influenced by aqueous chemistry
- MetaFix[®] reagents are designed to alter aqueous chemistry in ways that will promote the best precipitation reactions
- Combining good understanding of precipitation chemistry for a given metal with knowledge of site geochemistry enables selection of the most appropriate MetaFix[®] formulation
- Eh-pH Diagrams (Pourbaix) can help identify the mineral forms in which heavy metals can best be precipitated
- Also help to reveal when a custom formulation may be needed.

Understanding Eh/pH Phase Diagrams


Aqueous Iron/Sulfur System as Influenced by pH and Eh

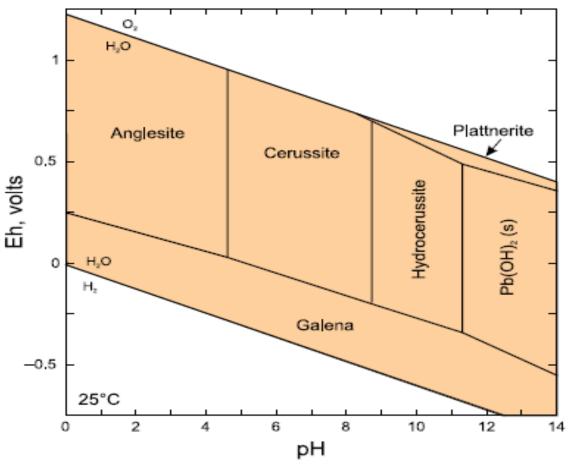
- Each region shows the most thermodynamically stable and therefore likely most abundant species
- Provides no information about kinetics of formation/dissolution
- Horizontal lines indicate electron transfer
- Vertical lines indicate an acid acid-base equilibrium
- Broad Eh-pH zone where iron will precipitate with sulfur to form FeS₂ (ferrous sulfide) in the form of Pyrite or Marcasite
- Note that total iron concentration influences the pH at which iron will begin to precipitate as Fe(OH)₃, Fe(OH)₂, or FeCO₃
- More soluble iron $\rightarrow \rightarrow$ precipitation begins at a lower pH

Aqueous Solubility and pH Stability of Heavy Metal Hydroxides, Iron Oxyhydroxides, and Sulfides

EPA 625/8-80-003, 1980; Banerjee et al., 2013. Veolia Water Inc. Environ. Sci. Technol. 1988, 22, 972-977

Heavy Metal Precipitate Solubilities as Sulfides, Carbonates, & Hydroxides

Table 2-1 Theoretical Solubilities of Hydroxides, Sulfides, and Carbonates of Selected Metals in Pure Water at 25°C (All Units are mg/L)


Metal	As Hydroxide	As Sulfide	As Carbonate
Cadmium (Cd ²⁺)	2.3×10^{-5}	6.7×10^{-10}	1.0×10^{-4}
Chromium (Cr ⁺³)	8.4×10^{-4}	No precipitate	_
Cobalt (Co ²⁺)	2.2×10^{-1}	1.0×10^{-8}	_
Copper (Cu ²⁺)	2.2×10^{-2}	5.8×10^{-18}	_
Iron (Fe^{2+})	8.9×10^{-1}	3.4×10^{-5}	—
Lead (Pb ²⁺)	2.1	3.8×10^{-9}	7.0×10^{-3}
Manganese (Mn ²⁺)	1.2	2.1×10^{-3}	_
Mercury (Hg ²⁺)	3.9×10^{-4}	9.0×10^{-20}	3.9×10^{-2}
Nickel (Ni ²⁺)	6.9×10^{-3}	6.9×10^{-8}	1.9×10^{-1}
Silver (Ag ⁺)	13.3	7.4×10^{-12}	2.1×10^{-1}
$Tin(Sn^{2+})$	$1.1. \times 10^{-4}$	3.8×10^{-8}	<u> </u>
Zine (Zn ²⁺)	1.1	2.3×10^{-7}	7.0×10^{-4}

PeroxyChem

Note Pb and Zn hydroxides versus sulfides.

EPA 625/8-80-003, 1980

Eh-pH Diagram for Pb in Groundwater with Sulfate

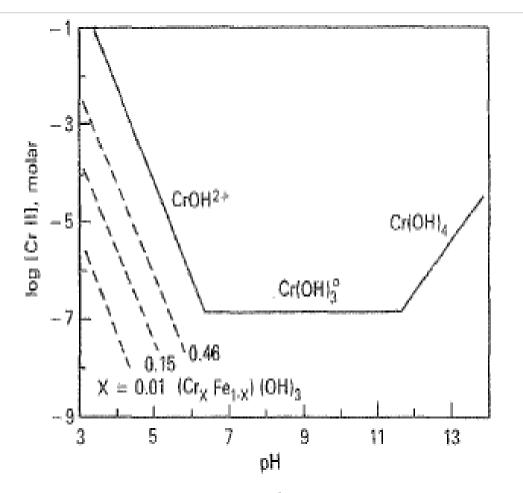
US EPA, 2007. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water. Volume 2. Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium. EPA/600/R-07/140.

PeroxyChem

Solubility **Mineral Precipitate** (µg/L) Lead Hydroxide 2,100 Pb(OH)₂ Anglesite 30,260 PbSO₄ Cerussite 7.0 PbCO₃ Galena 3.8×10^{-6} PbS Hydroxypyromorphite 37 (est.) Pb₅(PO4)₃OH MCL 50

Iron-based Treatment of Cr⁺⁶

- Reduction of Cr⁺⁶ to Cr⁺³ by ZVI is followed by its precipitation as mainly mixed Fe-Cr oxyhydroxides with a mineral structure near goethite (α-FeOOH) with some Cr⁺³ also deposited into a hematite-like structure (Fe₂O₃).^{1,2}
- Solubility of Fe-Cr-oxyhydroxides is less than 0.05 μ g/L over a broad pH range of 5.0 to 12.0³


$$Fe_{[solid]}^{0} + CrO_{4}^{2-} + 8H^{+} \rightarrow Cr^{+3} + Fe^{3+} + 4H_{2}O$$
(1)
(1-x) $Fe^{3+} + (x)Cr^{3+} + 4H_{2}O \rightarrow Fe_{(1-x)}Cr_{(x)}OOH_{[solid]} + 3H^{+}(2)$

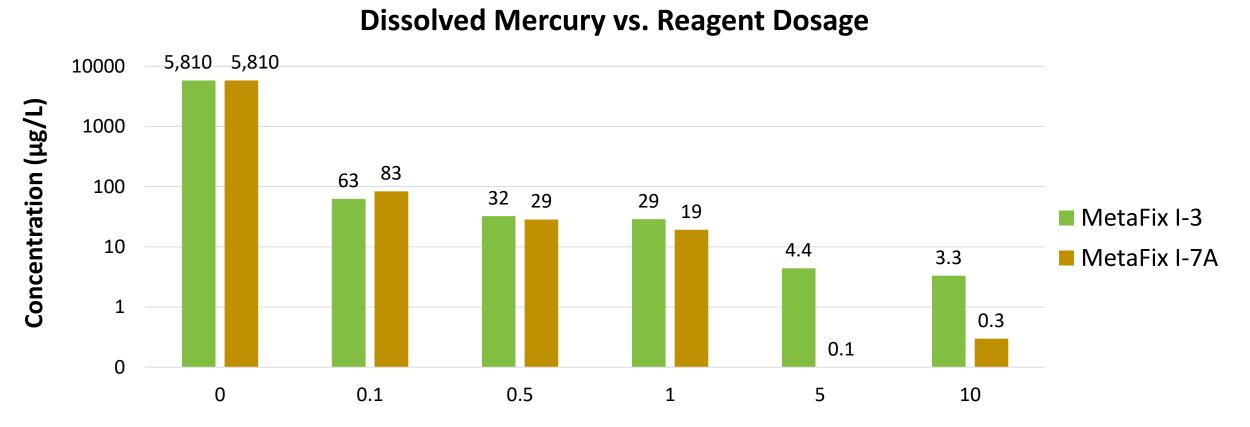
• The Fe-Cr oxide which has the form of hematite (Fe₂O₃) is primarily deposited on the surface of precipitates²

- 1. Blowes et al., 2000. J. Contam. Hydrol. 45: 123-137
- 2. Tratnyek et al., 2003. In: Tarr, M. Chemical Degradation Methods for Wastes and Pollutants
- 3. Eary and Rai. 1988. Env. Sci. Technol. 22:972-977.

Solubility of Mixed Fe-Cr Oxyhydroxides

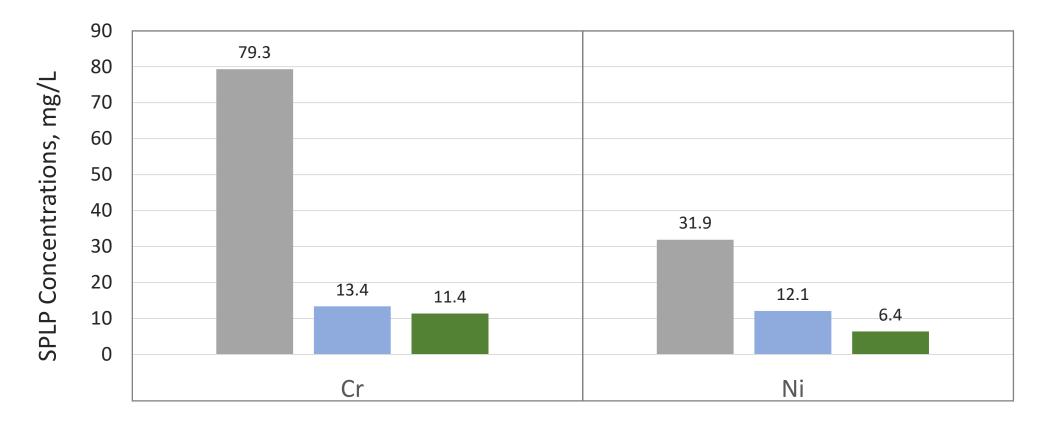
- ✓ Reduction of Cr(VI) to Cr(III) by Fe⁺² is rapid (minutes)
- ✓ The main product is a mixed Fe-Cr oxyhydroxide
- ✓ Precipitates with more Fe/less Cr have lower solubilities
- ✓ All are much less soluble than Cr(OH)₃ and have solubility well below most remedial standards for groundwater
- The free energy of formation for Fe-Cr oxyhydroxide is lower than that for Cr(OH)₃, so it will be preferentially formed when free Fe⁺² is available

Fig. 3. Solubility-controlling solids of Cr(III). Solid line represents $Cr(OH)_3$. Dashed lines represent $(Cr, Fe)(OH)_3$ at different values of $Cr(OH)_3$ mole fractions (x).


😢 PeroxyChem

MetaFix® Treatability Testing

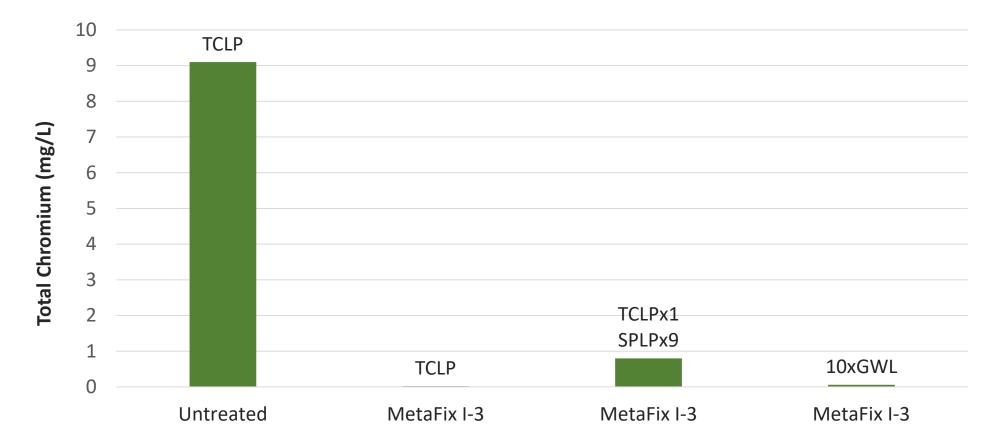
- Cost-effective way to optimize treatment before starting larger scale treatment
- Completed quickly: usually in 2 -3 weeks after receipt of groundwater and/or soil samples
- Identify most effective reagent
- Provide estimate of required dosage
- Determine need for supplemental pH adjustment
- Potential need for custom formulation


MetaFix® Treatability Testing

- Positive dosage response for both MetaFix[®] reagents
- Excellent removal of Hg even at dosage as low as 0.1% w/w
- Higher removal efficiency for I-7A formulation: → Better removal of organic forms of Hg?

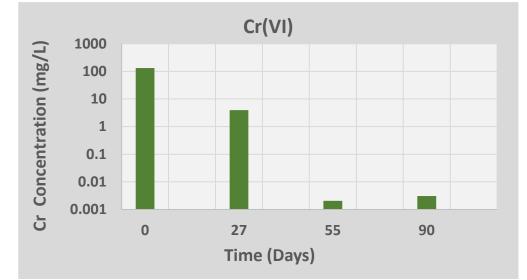
PeroxyChem

Comparative Performance of MetaFix[®] and CaSx (SPLP chromium and nickel in soil/groundwater slurry)

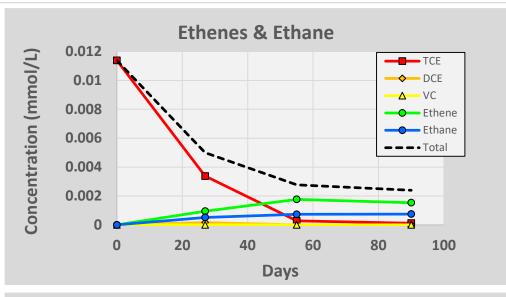

Control (20 day pH 6.4) CaPS 1.5% (20 day pH 8.2) MetaFix 1.0% (20 day pH 6.6)

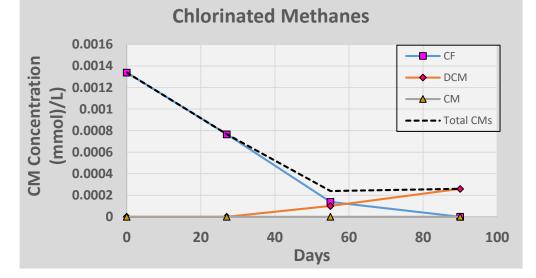
Reagent Dosing, wt/wt% and pH after 20 Days of Treatment

Independent Test Results from Professor D. Cassidy, WMU., D. Gray AECOM. 2014


Stability of MetaFix® Mineral Precipitates

Independent Laboratory US EPA Multiple Extraction Protocol Values are 9.02, 0.02, 0.80, and 0.06 mg/L


PeroxyChem


MetaFix® Treatment of Chromium, TCE, and CF in Groundwater

- Effective treatment of heavy metals and chlorinated solvents can be challenging
- MetaFix[®] reagents allow simultaneous treatment of both metals and cVOCs
- Cr⁺⁶ reduced from 132 mg/L to 0.003 mg/L
- TCE and CF removed with very little accumulation of breakdown products
- Note production of ethene and ethane

PeroxyChem

MetaFix[®] + EHC[®] Plus Treatment of Heavy Metals, Cyanide, cVOCs, and Fluorinated Organics

Influence of MetaFix[®] + EHC[®] Plus treatment on concentrations of Cr⁺⁶, As, Se, TCE, Cyanide, PFOA, and PFOS in groundwater (14 days treatment).

Analyte	Treatment Control	MetaFix [®] I-3 + EHC [®] Plus (2.0% w/w)	MetaFix [®] I-3 + EHC [®] Plus (5.0 % w/w)	Remediation Goal		
pH (SU)	8.36	7.01	6.98			
ORP (mV)	110	100	51			
Chromium, Hexavalent (µg/L)	268,000	91,000	<10	11		
Arsenic (µg/L)	96.1 (J)	1.8 (J)	1.7 (J)	10		
Selenium (µg/L)	124 (J)	6.8	<0.79	5		
Cyanide, Free (µg/L)	29.6	1.9 (J)	1.4 (J)	5.2		
Trichloroethene (μg/L)	221	1.9	0.37 (J)	200		
cis-1,2-Dichloroethene (µg/L)	46.7	1.4	0.36 (J)	620		
trans-1,2-Dichloroethene (µg/L)	3.2 (J)	<1.1	<1.1	1,500		
Chloroethene (µg/L)	13.8	3.3	0.90 (J)	13		
Perfluorooctanoic acid (µg/L)	0.0827 (J)	0.0218 (J) / 0.0200 (J)	0.0218 (J)	12		
Perfluorooctane sulfonate (µg/L)	3.47 (J)	0.617 (J) / 0.558 (J)	0.467 (J)	0.012		
Notes:						
J. Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit						

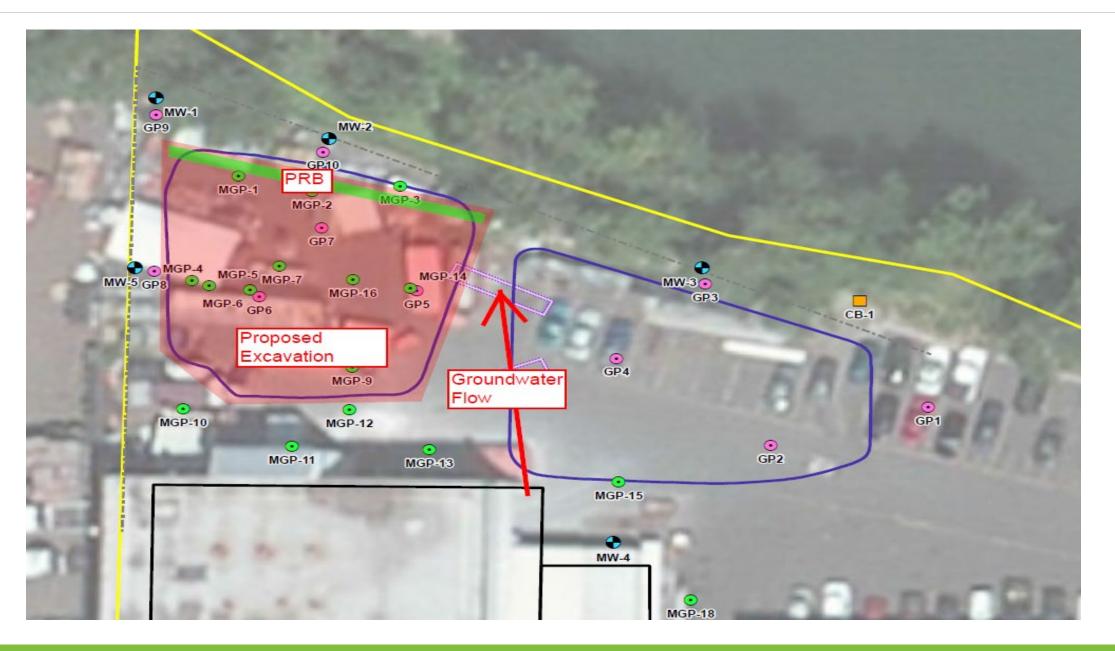
🔁 PeroxyChem

MetaFix[®] Case Study #1 PRB Treatment of Mixed Heavy Metals

- Site: Manufacturing facility in Pacific Northwest
- Consultant: Maul Foster & Alongi
- COCs: Mixed heavy metals (aluminum, arsenic, copper) and high alkalinity
- Treatment: Excavation of source area soil combined with MetaFix[®] permeable reactive barrier(PRB) designed to prevent migration of residual metals into adjacent river
- Application: MetaFix[®] mixed into to backfill to cover downgradient wall of excavation to form PRB

Case Study #1 PRB Design and Implementation

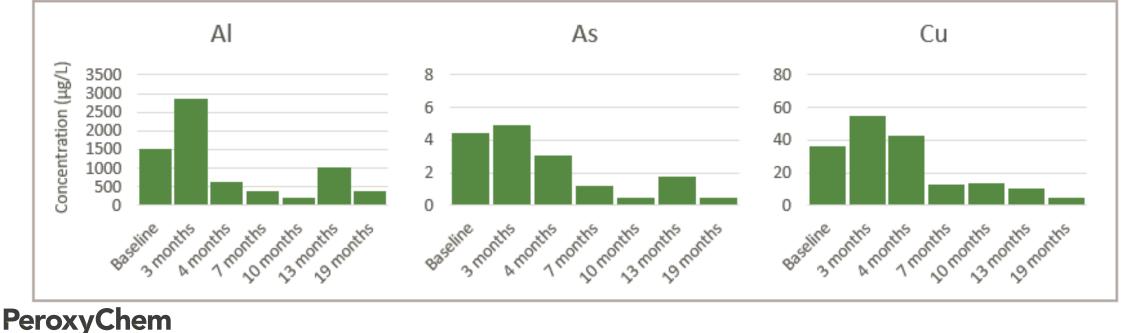
- Impacted soil was excavated down to 18 ft bgs and removed
- MetaFix[®] PRB was installed along sheet piling at the downgradient wall of excavation in conjunction with backfilling the excavation with clean soil
- PRB Dimensions: 80 ft long x 3 ft wide x 15 ft thick (from 5 to 20 ft bgs)
- Target Dosage in Soil: 6% by soil mass
- Mass: 24,000 lbs (12 x 1-ton supersacks)



Case Study #1 Site Map

Case Study #1 MetaFix[®] Installation Simple Soil Mixing with Backhoe

MetaFix[®] reagent applied in 1.25 ft lifts with 1 supersack per lift and then blended into soil using backhoe



Case Study #1 MetaFix[®] Performance

- Monitoring data at 3, 4, 7, 13, and 19 months post installation
- Transient post-installation increase presumably due to physical mobilization of metals
- All RGs achieved: Al (750 μ g/L), As (2.1 μ g/L), and Cu (12 μ g/L)

MetaFix® Case Study #2

PeroxyChem

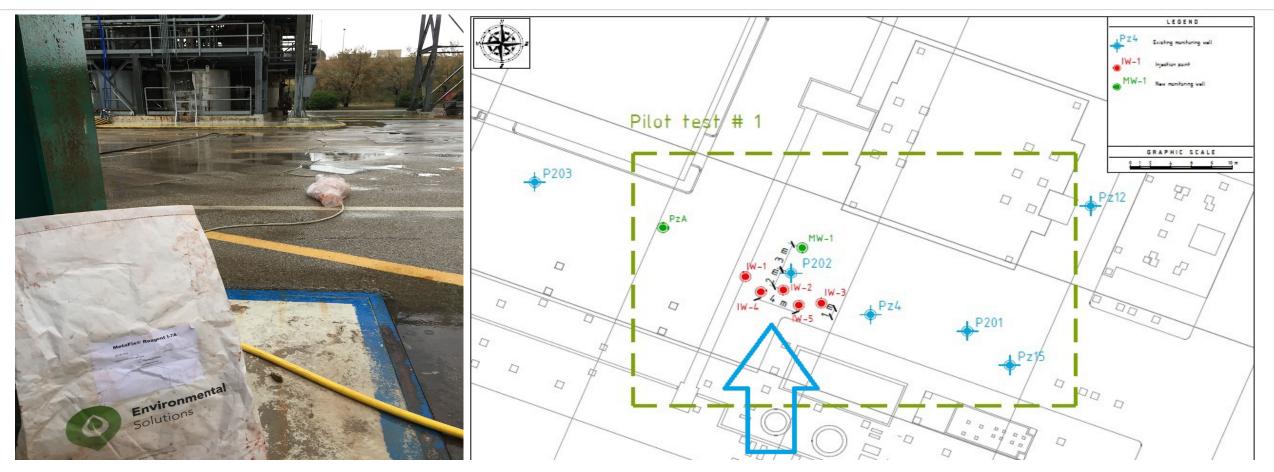
• Industrial site in eastern Italy

- Impacts included mercury at up to 400 µg/L and 1,2-dichloropropane at up to 1.0 µg/L
- Bench-scale testing was conducted to determine the most effective MetaFix[®] reagent
- Also estimate of the required dosage

Case Study #2 Bench-scale Optimization for Soluble Mercury in Groundwater

Influence of MetaFix[®] reagent and dosage on leachable mercury.

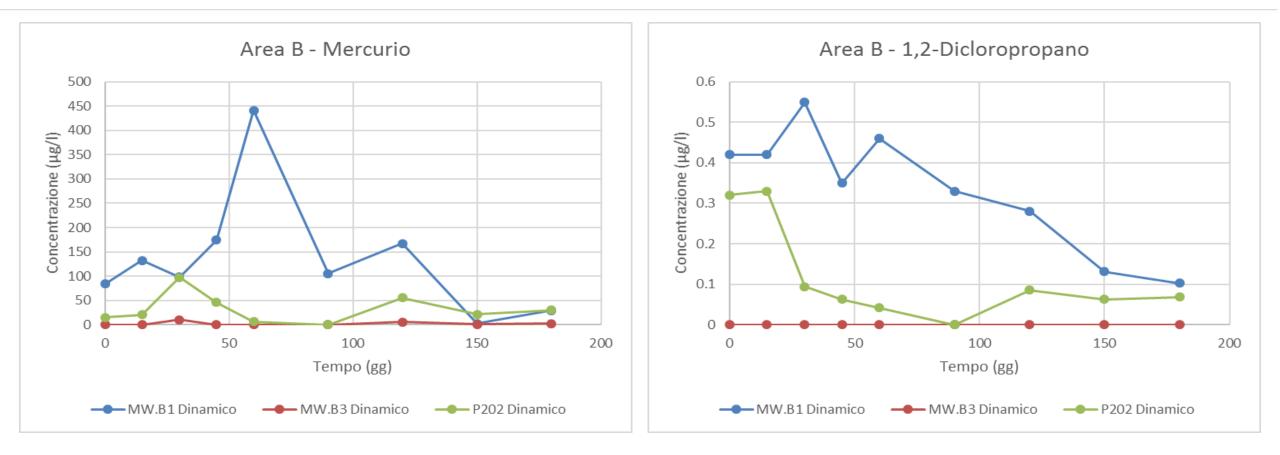
Soil (g)	Groundwater (mL)	MetaFix [®] Reagent	Dose (%w/w)	Final ORP (mV)	Final pH (SU)	Leachable Hg (µg/L)	Reduction ^{1,2} (%)
10.0	200	Control	-	+273	7.32	1.5	-
10.0	200	I-6A Low	1.0	-226	8.00	0.730	57
10.0	200	I-6A High	2.0	-282	8.20	<0.200	94
10.0	200	I-7A Low	1.0	-233	7.61	<0.200	94
10.0	200	I-7A High	2.0	-277	7.81	<0.200	94


1. Half the method detection limit (MDL) was used to calculate % reduction for results below the MDL.

2. Reduction percentages are in comparison to the Control.

- Testing conducted by Resolution Partners, Madison WI.
- Batch tests using a groundwater to soil ratio of 20:1.
- Reaction time was of 7 days
- Leaching solution was site groundwater
- Complete removal of soluble Hg achieved at lower dosage with I-7A
- Little change in pH
- Substantial drop in ORP

Case Study #2 MetaFix[®] Treatment of Mercury and 1,2-Dichloropropane



- Reactive zone created with direct push injection
- Low permeability silty sand aquifer at about 12 m bgs
- Targeted zone about 2.0 m thick

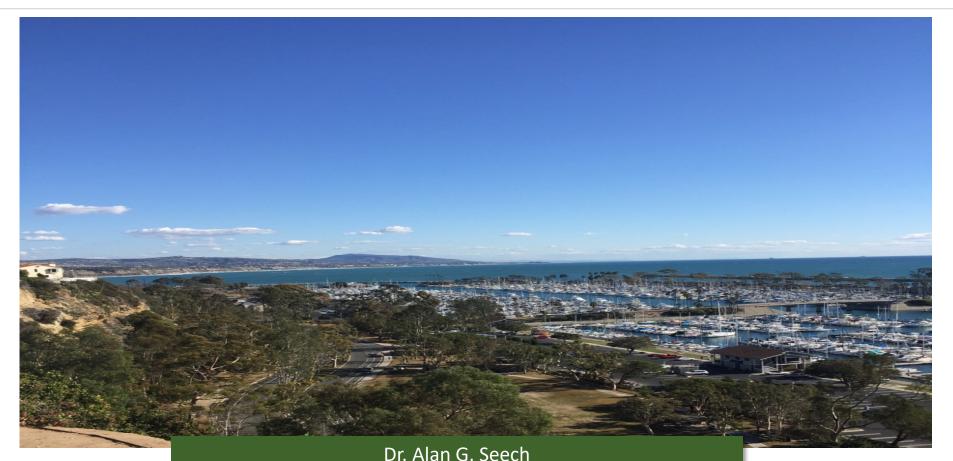
PeroxyChem

• MW1 and P202 re down gradient while MWB3 is cross gradient (and off the map)

Case Study #2 MetaFix[®] Treatment of Mercury and 1,2-Dichloropropane

• Transient post-injection increase may have been caused by physical release of occluded COI

• Soluble Hg reduced to 2 µg/L at day 150 • RG for Hg is 1 g/L • 1,2-DCP reduced to below the RG of 0.15 g/L by day 150



Summary

- Heavy metals are converted into low solubility mineral precipitates, including sulfides, iron sulfides, phosphates, and carbonates
- Simultaneous treatment of heavy metals and chlorinated solvents
- Heavy metal sulfides and iron sulfides have very low solubility and are stable over a broad pH range (reduced susceptibility to rebound)
- Custom-formulations enable successful treatment of even complicated sites
- Low cost treatability screening optimize formulation and confirm required dosage (\$2,500)

Thank-you! Questions & Comments?

Senior Manager of Technology Applications PeroxyChem Environmental Solutions 3334 E. Coast Hwy., Suite 114 Corona Del Mar CA 92625 Tel: +1-949-514-1068 • Email: Alan.Seech@peroxychem.com

