

Bench Testing for the Successful Implementation of Remediation Technologies

Brianna Desjardins Brant A. Smith P.E., Ph.D. September 30, 2015

New Name. Decades of Experience.

Field-Proven Portfolio of Remediation Technologies Based on Sound Science

In Situ Chemical Oxidation

- 1. Klozur® persulfate
- 2. Klozur® CR

In Situ Chemical Reduction

- 3. EHC® Reagent
- 4. EHC® Liquid
- 5. Daramend® Reagent

Aerobic Bioremediation

- 6. Terramend® Reagent
- 7. PermeOx® Ultra

Immobilization/Stabilization

8. EHC® Metals and MetaFix® Reagent

Enhanced Reductive Dechlorination 9. ELS™ Microemulsion

NAPL Stabilization/Mass Flux Reduction

10. ISGS™ Technology

Environmental

Solutions

Presentation Outline

- Bench Tests: What, When, Where, and Why?
- Bench Test Set Up Basics
- Typical Bench Tests
 - Oxidative Technologies
 - Stabilization Technologies
 - Reductive Technologies
- Limitations, Issues and Scale Up
- Summary and Conclusions

BENCH TESTS: WHAT, WHEN, WHERE AND WHY?

What is a Bench Test?

• Tests conducted on a bench?

- <u>Yes....exactly</u>

- Allows for the opportunity to evaluate various test conditions
 - Limited basis
 - Controlled setting
- Lower cost and risk compared to evaluation in the field

What is a Bench Test?

Environmental

Solutions

Site Specific Evaluation

- Evaluate:
 - Site soils and groundwater with proven technology
- Intent/Objectives:
 - Develop site specific <u>design</u>
 <u>parameters</u>
 - Optimize treatment conditions
 - Confirm treatment efficacy
 - Compare treatment efficacy between competing technologies
 - Satisfy regulatory concerns

When do You Bench Test?

- Remedial Investigation
- Feasibility Study
 - Bench tests
- Technology Selection
- Design
 - Bench tests
- Field Application
 - Pilot scale application
 - Full scale application

- Sufficient demand that several bench test options exist
 - Industry (e.g. PeroxyChem)
 - Design and implementation companies
 - Dedicated bench test facilities
 - Academia

Environmental

Solutions

- Very few, if any, method standards for bench tests
 - Understanding laboratory method and how it applies
- <u>Consult design and</u> <u>implementation team for</u> <u>preferred vendors</u>
 - May favor a specific treatability laboratory
 - Have familiarity on how to best implement one labs methods and results

Why Bench Test?

- Typical Objectives
 - Develop site specific
 <u>design parameters</u>
 - Optimize treatment conditions
 - Confirm treatment efficacy
 - Compare treatment efficacy between competing technologies
 - Satisfy regulatory concerns

- Cost effective for most sites
 - Perhaps not always small sites
- Risk
 - Issues, if identified, did not result in negative consequences in the field

Bench Test Expectations

- Bench Tests provide:
 - Results

Environmental

Solutions

- Not always solutions
- Failure to achieve results is not necessarily a failed bench test
 - Identified an unexpected result
 - Potential design modification
 - Prevent a failed application

 An unexpected result identified on a bench is typically more cost effective than a failure in the field

BENCH TEST SET UP BASICS

Bench Test Design

- Key Design Parameters
 - Batch vs. column reactors
 - Sample volume needed for analysis
 - Batch reactors
 - Column reactors
 - Specific test condition set up

Batch vs Column Reactors

Column vs Batch Reactors

Batch Reactors

- *Relatively* less expensive
- Uses less soil and groundwater

Environmental

Solutions

- Best for test durations of days to weeks
- Sample volume:
 - Soil to groundwater ratio

Column Reactors

- *Relatively* more expensive
- More soil and groundwater
- Can simulate permeable reactive barrier technologies
 - Can take 3-12 months
- Sample volume:
 - Flow rate

Test Condition Set Up

• Test Duration

Environmental

Solutions

- Reagent dose/concentration
- Contaminant concentration
 - Phase
 - Spiking
- Site soils and groundwater
- Dosed in a manner that will allow for estimation of design parameters

TYPICAL BENCH TESTS: OXIDATIVE TECHNOLOGIES

Oxidative Technologies

- In Situ Chemical Oxidation (ISCO)
 - Klozur[®] Persulfate
 - Hydrogen Peroxide
- In Situ Bioremediation (ISB)
 PermeOx[®] Ultra
- Combined ISCO and ISB – Klozur[®]CR

Klozur Persulfate

Fundamental Bench Tests

- Klozur Demand Test (soil oxidant demand-SOD)
- Base Buffering Capacity (Alkaline activated persulfate only)
- Treatability Study

Optional Bench Tests

- Total oxidant demand (TOD)
- Persulfate stability
- Technology Screening Test
- Activator Optimization Test
- Metals analysis

Klozur: Fundamental Bench Tests

Klozur Demand Test

• Objective:

Environmental

Solutions

- Quantify non-target (soil oxidant) demand associated with the native soil and groundwater
- Prevent underdosing of sites
- Result:
 - Mass of Klozur persulfate needed to satisfy the nontarget demand
 - Usually g Klozur per Kg soil
- Importance:
 - Critical design parameter

Base Buffering Capacity

- Objective:
 - Quantify the amount of 25% sodium hydroxide needed to raise the aquifer system to pH > 10.5
 - Monitor for precipitation in GW-Only reactor
- Result:
 - Mass of 25% NaOH needed to achieve and sustain pH >10.5
 - Usually g 25% NaOH per Kg soil
- Importance:
 - Critical design parameter for alkaline activated persulfate

Klozur: Fundamental Bench Tests

Treatability Study

- Objective:
 - Confirm site objectives on the bench scale
 - Treatment effectiveness
 - Degradation ratio
- Result:
 - Progress toward site objectives
 - Contaminant destruction
 - Over time (rate of destruction)
 - Degradation ratio (w/w)

- Importance
 - Confirm treatment on a bench scale
 - Degradation ratio (w/w)

 Total Oxidant Demand (TOD)

Environmental

Solutions

- Natural and contaminant demand
- Persulfate Stability
 - Rate Klozur persulfate decomposes
 - Low Soil:GW ratio
- Technology Screening Test
 - ISCO technologies
 - Klozur activators

- Activator Optimization Test
 - Iron-chelate
 - Others
- Metals Analysis
 - Evaluate metals concentrations after treatment
 - After return to baseline geochemical conditions

Hydrogen Peroxide: Bench Tests

Hydrogen Peroxide Stability

• Objective:

Environmental

Solutions

- Determine the stability of hydrogen peroxide in the presence of site soils and groundwater
- Assess stabilization agents
- Result:
 - Rate of decomposition
 - Half life of hydrogen peroxide
- Importance:
 - Critical design parameter

Gas Evolution

- Objective:
 - Determine the overall volume and rate at which gases evolve during the decomposition of hydrogen peroxide
- Result:
 - Rate of gas evolution
 - Ratio of gases evolved (v/v)
- Importance:
 - Critical design parameter

PeroxvChem

Hydrogen Peroxide: Bench Tests

Treatability Study

- Objective:
 - Confirm site objectives on the bench scale
 - Treatment effectiveness
 - Degradation ratio
- Result:
 - Progress toward site objectives
 - Contaminant destruction
 - Over time (rate of destruction)
 - Degradation ratio (w/w)

- Importance
 - Confirm treatment on a bench scale
 - Degradation ratio

PermeOx[®] Ultra

PermeOx Ultra

- Calcium peroxide engineered for slow release of dissolved oxygen to promote aerobic bioremediation
 - $CaO_2 + 2H_2O \rightarrow Ca(OH)_2 + H_2O_2$ $2H_2O_2 \rightarrow O_2 + 2H_2O$
- Applied as a slurry
- 18% active oxygen by weight
- Used to treat petroleum hydrocarbons
- Persists 6-12 months
 - 8-12 mg/L DO

Bench Scale Tests

- Bench scale tests: not typical
- Designs usually based upon subsurface parameters
- Long term column studies possible

Klozur[®]CR: Bench Tests

- Klozur Demand Test

 Similar to Klozur persulfate
- Base Buffering Capacity
 - Used to identify potential issues
- Treatability Study

Environmental

Solutions

- Batch reactor: Alkaline activated persulfate
- Column reactors: Long term ISCO, aerobic and anaerobic bioremediation

TYPICAL BENCH TESTS: METAFIX[®] REAGENT

MetaFix[®] Overview

- MetaFix: category of metals stabilization products
- Multiple proprietary blends of inorganic reagents designed to promote multiple mechanisms of metals removal including reduction, adsorption and precipitation
 - Different mechanisms may work better for different metals and different site conditions
- Does not depend on microbial activity

MetaFix Testing

- Screening level bench test
- Site geochemistry and formulation optimization
- Objective:
 - Determine optimal MetaFix blend
 - Assess stabilization of metals
- Result:
 - Sequestration of metals
- Importance:
 - Critical design parameter

TYPICAL BENCH TESTS: REDUCTIVE TECHNOLOGIES

Reductive Technologies

- EHC[®] Reagent:
 - Stimulates in situ chemical reduction (ISCR)
 - Creates abiotic and biotic reductive pathways
 - Blend of controlled released carbon, zero valent iron (ZVI) particles and nutrients
- ELSTM Microemulsion:
 - Stimulates enhanced reductive dechlorination reactions
 - Creates reducing conditions and serves as an electron donor
 - Lecithin-based substrate of food-grade carbon

EHC Testing

- Both batch and column studies samples are sent for initial
 - geochemical testing
 - Used to look for potential competing electron acceptors
 - Unusual site conditions
- Initial tests are used to evaluate:
 - Initial pH of site soil and groundwater
 - Need for bioaugmentation

EHC Batch vs Column

<u>Batch</u>

•Pros

Greater pH modificationLess soil & groundwaterFaster test/results

•Cons

-gas generation & VFA production, accumulate in the system

<u>Column</u>

•Pros

- more representative of field conditions,
- -no accumulation of gases or VFAs,
- -can adjust flow rate

•Cons

- -takes longer than batch study
- requires more soil & gw
- –lab cannot do a significant pH adjustment

EHC Testing

- Objective:
 - Optimal dosing
 - Assess treatment of contaminants
 - Optimal pH range
- Result:
 - Reduction of contaminants
 - Optimal pH range obtained and sustained
- Importance:
 - Critical design parameter Collapsible Bag Peristaltic Pump Treatment Column

ELS Testing

- Column or batch depending on desired field implementation
- Batch reactors set up same way as EHC batch reactors
- Why run bench study?
 - High sulfate aquifers
 - Inhibition by other parameters
 - Comparison of substrates
 - Unusual aquifer conditions

ELS Testing

- Objective:
 - Optimal dosing
 - Assess treatment of contaminants, if biostimulation alone is sufficient
 - Optimal pH range
- Result:
 - Reduction of contaminants
 - Determine if bioaugmentation is needed
 - Optimal pH range obtained and sustained
- Importance:
 - Critical design parameters

BENCH TESTING COMBINED REMEDIES

Combined Remedies

 Combination of different technologies typically applied to the site in sequence

Environmental

Solutions

- ISCO follow by EHC
- Biogeochemical treatment following EHC or Klozur persulfate

- Bench tests of combined remedies
 - First technology will alter subsurface conditions
 - Second technology is tested on treated soils

LIMITATIONS, ISSUES AND SCALING UP FROM BENCH TO FULL SCALE

Bench Test Limitations

- Typically conducted on homogenized soil
- Assumes tested soil and groundwater are representative of site conditions
- Controlled conditions allow for better contact in laboratory compared to the field
- Groundwater needed for sampling
 - Batch reactors-elevated groundwater to soil ratios
 - Column reactors—elevated flow rates
- Difficult to replicate all aspects of field

Potential Issue(s)

- Typically conducted on homogenized soil
- Assumes tested soil and groundwater are representative of site conditions

Scale Up Considerations

- Be cognizant of conditions tests soils represent and how they apply across the site
 - Conduct tests on multiple samples representative of target area, especially of different soil types
 - Have detailed understanding of how soil conditions and contaminant distribution vary across the site
- Safety Factors

Potential Issue

Environmental

Solutions

 Controlled conditions allow for better contact in laboratory compared to the field

Scale Up Considerations

- Safety Factor applied to design parameters
 - >1x most common (lab more efficient that field)
 - <1x for conditions where contact is expected to be significantly less (i.e. fractured bedrock)

PeroxvChem

Potential Issue

 Groundwater needed for sampling

Environmental

Solutions

- Batch reactors-elevated groundwater to soil ratios
- Column reactors—elevated flow rates

Scale Up Considerations

- Batch reactors reagent per:
 - Mass of contaminant (Degradation Ratio): lb/lb
 - Mass of soil (Dosage): g/Kg
 - Volume of groundwater (Concentration): g/L
- Column reactors
 - Normalized flow rate to pore volumes
 - Still need to consider if time was a factor
 - Soils still typically are disturbed

Potential Issue

- Difficult to replicate all aspects of field
 - Migration to down gradient soils
 - In flux on up gradient groundwater
 - Biotic affects
 - Contaminant and native material heterogeneity

Scale Up Considerations

- Complex column reactors
- Safety factors
- Pilot Scale Test

SUMMARY AND CONCLUSIONS

Summary

 Bench Scale Tests are an important part of remedial decision making and design

- Bench scale tests can be used for:
 - Development of site specific design parameters
 - Optimize treatment conditions
 - Confirm contaminant treatability with site specific soil

Thank You - Questions

Technical Application Managers

Dan Leigh, P.G., CH.G. ERD and Federal Programs Daniel.Leigh@peroxychem.com 925-984-9121

Alan Seech, PhD

Metals, ISCR, and Laboratory Alan.Seech@peroxychem.com 949-388-7065

Fayaz Lakhwala, PhD

ISCR Fayaz.Lakhwala@peroxychem.com 908-688-8543

Brant Smith, PhD Chemical Oxidation Brant.Smith@peroxychem.com 603-793-1291