



# Effective Biotreatment of Soils Containing TNT, DNT, ANT, RDX, HMX, and Tetryl with Daramend<sup>®</sup> Reagent

Alan Seech, Ph.D. PeroxyChem, LLC Philadelphia PA

21 April 2021 PeroxyChem is a company of Evonik Industries AG



# **Presentation Outline**



- PeroxyChem Overview
- Daramend<sup>®</sup> and other PeroxyChem ISCR Reagents (composition, applicability)
- Basics of ISCR Chemistry and Biochemistry
- Reductive Degradation of Organic Explosive Compounds in Soil
- Daramend <sup>®</sup> Performance Data: Bench-scale, Pilot-scale, Full-scale
- Soil Treatment Case Study
- Questions and Answers

## Field-Proven Portfolio of Remediation Technologies Based on Sound Science

#### **Chemical Oxidation**

- Klozur<sup>®</sup> Persulfate Portfolio
  - Klozur<sup>®</sup> SP
  - Klozur<sup>®</sup> KP
  - Klozur<sup>®</sup> One
  - Klozur® CR
- Hydrogen Peroxide

#### Aerobic Bioremediation

- Terramend<sup>®</sup> Reagent
- PermeOx<sup>®</sup> Ultra
- PermeOx<sup>®</sup> Ultra Granular

#### Metals Remediation

• MetaFix<sup>®</sup> Reagents

#### **Chemical Reduction**

- EHC ISCR Portfolio
  - EHC<sup>®</sup> Reagent
  - EHC<sup>®</sup> Liquid
  - EHC <sup>®</sup> Plus
- Daramend<sup>®</sup> Reagent
- Zero Valent Iron

#### Enhanced Reductive Dechlorination

- ELS<sup>®</sup> Microemulsion
- ELS<sup>®</sup> Liquid Concentrate
- ELS<sup>®</sup> Dry Concentrate

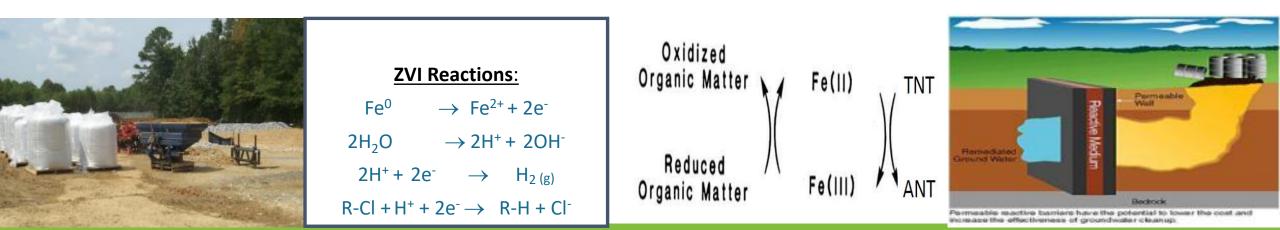
#### BioGeoChemical

• GeoForm<sup>™</sup> Reagents

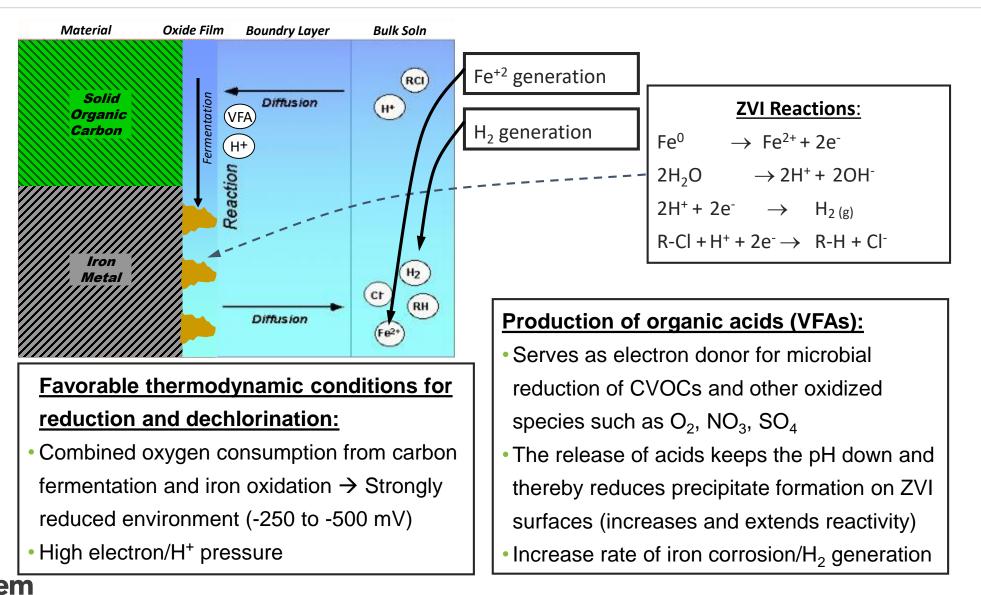
A CONTRACTOR OF A CONTRACTOR O

# **PeroxyChem ISCR Reagents**

| Attribute           | Daramend <sup>®</sup><br>Reagent                                                   | EHC <sup>®</sup><br>Reagent                                                     | EHC <sup>®</sup><br>Metals             | EHC®<br>Plus                                          | GeoForm™ ER                                                   | GeoForm™<br>Soluble           | MetaFix <sup>®</sup><br>Reagents |
|---------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|-------------------------------|----------------------------------|
| ORP                 | strongly<br>reduced                                                                | strongly reduced                                                                | strongly<br>reduced                    | strongly reduced                                      | strongly<br>reduced                                           | reduced                       | reduced                          |
| Slow-release Carbon | $\checkmark$                                                                       | $\checkmark$                                                                    | $\checkmark$                           | $\checkmark$                                          | $\checkmark$                                                  | $\checkmark$                  | -                                |
| Soluble Carbon      | -                                                                                  | -                                                                               | -                                      | -                                                     | $\checkmark$                                                  | $\checkmark$                  | -                                |
| Nutrients           | $\checkmark$                                                                       | $\checkmark$                                                                    | $\checkmark$                           | $\checkmark$                                          | $\checkmark$                                                  | $\checkmark$                  | -                                |
| pH Buffer           | -                                                                                  | -                                                                               | -                                      | -                                                     | $\checkmark$                                                  | $\checkmark$                  | $\checkmark$                     |
| ZVI                 | $\checkmark$                                                                       | $\checkmark$                                                                    | $\checkmark$                           | $\checkmark$                                          | $\checkmark$                                                  | -                             | -                                |
| Ferrous Iron        | -                                                                                  | -                                                                               | -                                      | -                                                     | $\checkmark$                                                  | $\checkmark$                  | -                                |
| Sulfate             | -                                                                                  | -                                                                               | $\checkmark$                           | -                                                     | $\checkmark$                                                  | $\checkmark$                  | -                                |
| Iron Oxides         | -                                                                                  | -                                                                               | -                                      | -                                                     | -                                                             | -                             | $\checkmark$                     |
| Iron Sulfide        | -                                                                                  | -                                                                               | -                                      | -                                                     | -                                                             | -                             | $\checkmark$                     |
| Activated Carbon    | -                                                                                  | -                                                                               | -                                      | $\checkmark$                                          | -                                                             | -                             | $\checkmark$                     |
| Applicability       | Pesticides, chlorinated<br>solvents, organic<br>explosives in soil and<br>sediment | Pesticides,<br>chlorinated<br>solvents, organic<br>explosives in<br>groundwater | As for EHC<br>and most<br>heavy metals | As for EHC<br>and provides<br>adsorption<br>mechanism | As for EHC<br>Metals and<br>formation of<br>reactive minerals | Fully soluble<br>"ISCR Light" | Metals                           |


# What is In Situ Chemical Reduction?

- Transfer of electrons from reduced metals (ZVI, ferrous iron) or reduced minerals (magnetite, pyrite, ferruginous clay) to contaminants including chlorinated organics, nitroaromatics, and certain heavy metals.
- Microbial processes play an important role in creation of chemistry suitable for ISCR by removing dissolved oxygen & nitrate, converting sulfate to sulfide, and reducing Fe<sup>+3</sup> to Fe<sup>+2</sup>.
- Limiting parameters in soil or groundwater may include supply of metabolizable carbon, availability of and form of iron, and the availability of sulfate.
- Reactive minerals can be formed *in situ* when chemistry and biochemistry are favorable, and the required reactants are available.
- We know that the thermodynamics of dehalogenation and reduction of nitro groups become more favorable as Eh becomes more negative.




# Why In Situ Chemical Reduction?

- Robust technology proven successful at hundreds of sites worldwide
- Multiple treatment mechanisms including direct chemical reduction, biostimulation, enhanced thermodynamic conditions
- Degradation pathways have been confirmed for most target compounds
- Destroys target compounds and therefore eliminates long term liability
- Eliminates O&M costs and can enable site closure
- Broadly applicable: most chlorinated organics, most nitro-substituted organic explosive compounds
- Often removes heavy metals simultaneous with destruction of organic target compounds



### Carbon Fermentation & ZVI Corrosion: Synergy That Promotes Multiple Reduction Mechanisms



PeroxyChem

### Influence of Eh on Dechlorination of CCl<sub>4</sub> Olivas, Y., Dolfing, J., and Smith, G.B., 2002

#### Thermodynamics: Stronger Reducing Conditions Result in More Dechlorination

Redox potential influence on dehalogenation

Environ. Toxicol. Chem. 21, 2002 495

| Ti (III) Eh (mV) | CCI                  | rates in nmol/h/mg | ± SD <sup>b</sup> | CHCl <sub>3</sub> rates in nmol/h/mg ± SD <sup>b</sup> |                  |                 |                  |
|------------------|----------------------|--------------------|-------------------|--------------------------------------------------------|------------------|-----------------|------------------|
| · ·              | at pH 7 <sup>d</sup> | Live               | HRſ               | Abiotic <sup>g</sup>                                   | Live             | HR              | Abiotic          |
| 0.0              | +534                 | 0                  | 0                 | 0                                                      | 0                | 0               | 0                |
| 0.6              | 104                  | $0.01 \pm 0.006$   | $0.002 \pm 0.002$ | 0                                                      | $0.03 \pm 0.01$  | $0.02 \pm 0.02$ | $0.02 \pm 0.004$ |
| 2.5              | -223                 | $0.09 \pm 0.05$    | $0.07 \pm 0.05$   | $0.002 \pm 0.002$                                      | $0.051 \pm 0.01$ | $0.06 \pm 0.01$ | $0.03 \pm 0.005$ |
| 10.0             | -280                 | $0.14 \pm 0.04$    | $0.28 \pm 0.08$   | $0.10 \pm 0.02$                                        | $0.04 \pm 0.002$ | $0.08 \pm 0.01$ | $0.05 \pm 0.01$  |
| 15.0             | 348                  | $0.31 \pm 0.02$    | $0.55 \pm 0.11$   | $0.14 \pm 0.05$                                        | $0.04 \pm 0.02$  | $0.09 \pm 0.02$ | $0.06 \pm 0.01$  |

Table 3. Redox potential and degradation rates<sup>a</sup>

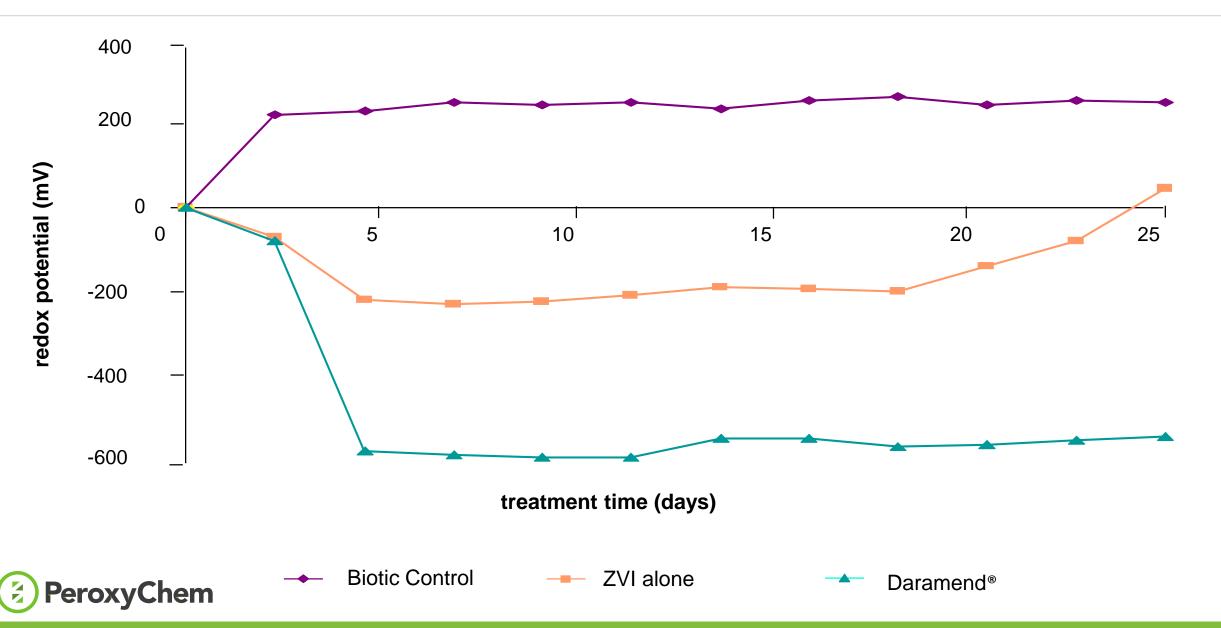
<sup>a</sup> Rates were drawn from linear portions of the degradation curves.

<sup>b</sup> Standard deviation.

e Titanium citrate concentration in millimols.

<sup>d</sup> Redox potential in millivolts based on the standard hydrogen electrode.

Live sludge.


f Heat-resistant, autoclaved sludge.

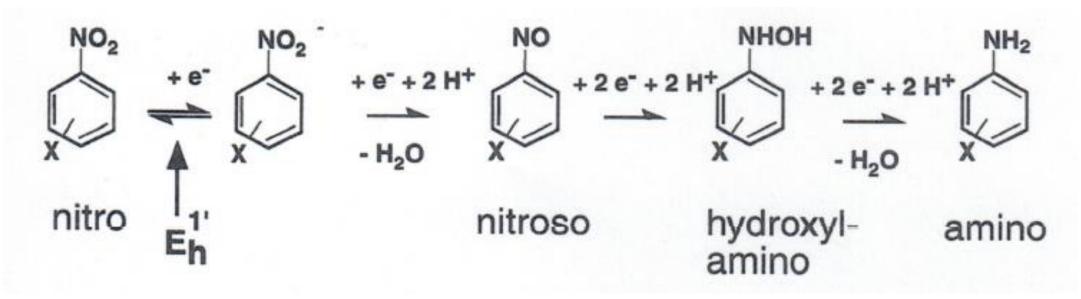
<sup>g</sup> No sludge inoculum.

- 1. Strong positive relationship between lower Eh and more rapid dechlorination ( $\uparrow$ 30x for CCl<sub>4</sub>)
- 2. Also improved removal of chloroform, but to a lesser degree.
- 3. Observed in both biotic and abiotic systems.



### Daramend<sup>®</sup> Reagent Controls Redox Potential in Saturated Soil



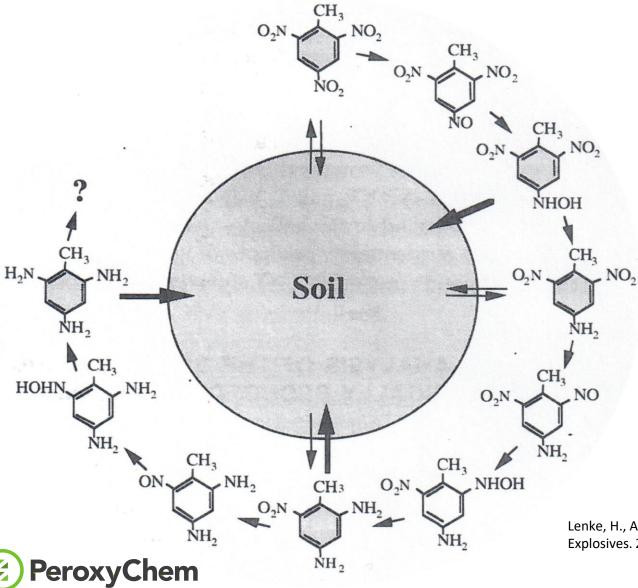

# Daramend<sup>®</sup> for Organic Explosive Compounds in Soil

- Promotes both chemical and biological reduction of target compounds (TNT, DNTs, ANTs, RDX, HMX, Tetryl, nitrocellulose, nitroglycerin, nitrobenzene)
- Daramend<sup>®</sup> reagents are composed of micro-scale zero valent iron + solid organic carbon, and food grade binding agent
- Organic component designed to provide a long-lasting, hydrophilic, source of carbon and nutrients while preventing strong adsorption of target compounds – which slows degradation (contrast with mulch, EVO, compost mix, or ZVI alone
- Microscale ZVI (Fe<sup>0</sup>) promotes chemical dehalogenation while labile organic carbon + nutrients push microbial growth and removal of oxygen/nitrate/sulfate
- Together these processes drive soil to a strongly negative Eh
- Strongly negative, long-lasting reducing conditions prevent accumulation of partial breakdown products
- Typical dosages are between 2.0% and 5.0% w/w of soil





# **Reductive Degradation of Nitroaromatics**

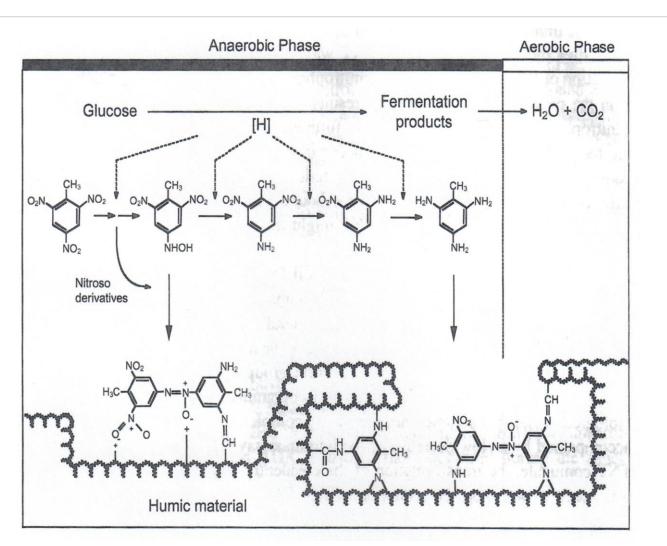



Haderlein, S., Hofstetter, T., and Schwartzenbach, R. In: Biodegradation of Nitroaromatic Compounds and Explosives. 2000. Eds.: Spain, J., Hughes, J, and Knackmuss, H.-J.

- Sequential reductive degradation of nitro groups with through intermediate compounds to fully reduced amino end product (reference).
- Requires 6 e<sup>-</sup> for complete reduction of one NO<sub>2</sub> group and 18 e<sup>-</sup> for TNT
- Suggests that effective treatment of OE with achievement of low residual concentrations is best achieved with a long-lasting source of reducing equivalents

### 😢 PeroxyChem

## **Fate of Nitroaromatics During Reductive Treatment**



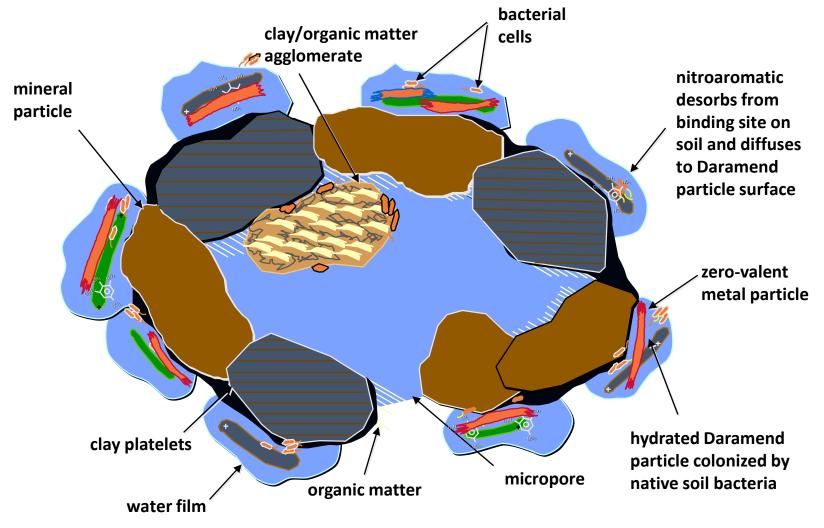

#### Adsorption of Reductive Degradation Products

- NO<sub>2</sub> groups are less strongly adsorbed
- NH<sub>2</sub> groups are highly reactive and strongly adsorbed
- Some reversibility as long as at least on NO<sub>2</sub> group is present
- Structure with three NH<sub>2</sub> groups (TAT) will be adsorbed irreversibly
- Highlights the importance of preventing accumulation of partial reduction products such as mono and diamino nitrotoluenes
- Adsorption is so strong that adsorbed TAT is not released even by alkaline or acid hydrolysis
- Supported by soil toxicology studies

Lenke, H., Achtnich, C., and Knackmuss, H.-J. In: Biodegradation of Nitroaromatic Compounds and Explosives. 2000. *Eds*.: Spain, J., Hughes, J, and Knackmuss, H.-J.

# Fate of TNT During Reductive Soil Treatment




TNT Reduction Products are Incorporated into Soil Organic Matter

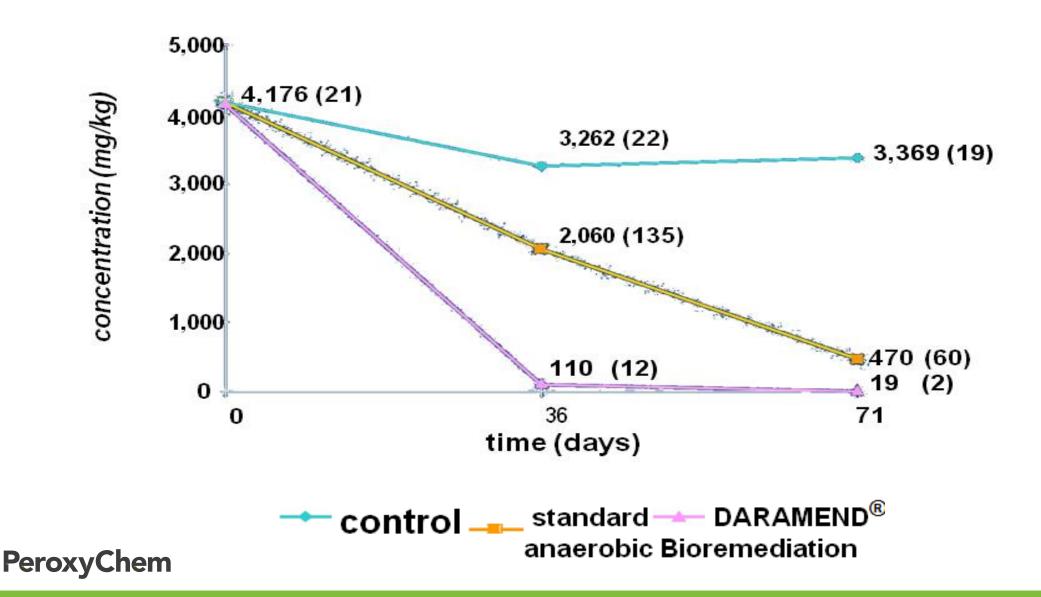
- Amino groups (-NH<sub>2</sub>) are highly reactive
- Subject to covalent incorporation into soil organic matter
- <sup>14</sup>C and <sup>15</sup>N NMR studies indicate that the fate of TNT during reductive treatment is covalent binding of the reduction products into soil humic and fulvic material
- An adequate supply of Fe<sup>+2</sup> is critical to full removal and detoxification of TNT and its breakdown products

Lenke, H., Achtnich, C., and Knackmuss, H.-J. In: Biodegradation of Nitroaromatic Compounds and Explosives. 2000. Eds.: Spain, J., Hughes, J, and Knackmuss, H.-J.

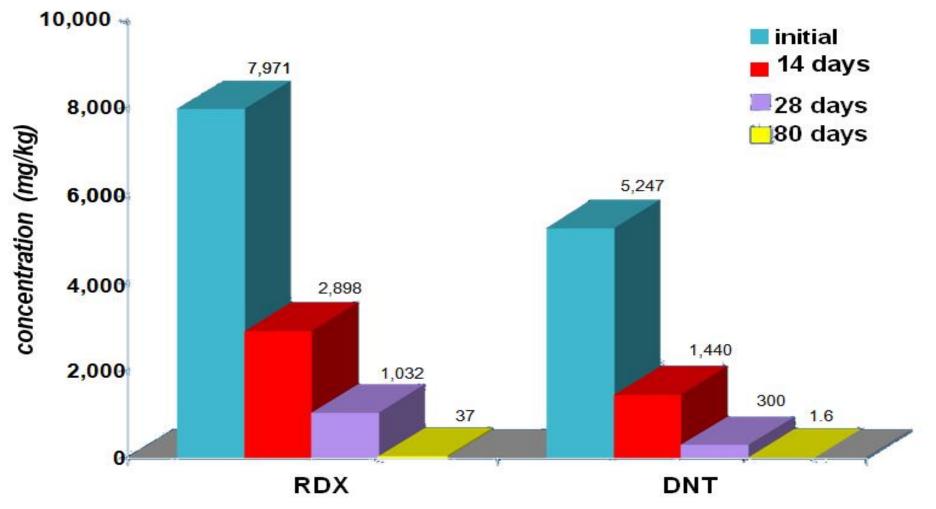
😢 PeroxyChem

### **Daramend<sup>®</sup> Treatment of Nitroaromatics and Organic Explosive Compounds**




PeroxyChem






# Bench-scale Performance Daramend<sup>®</sup> Reagent for Organic Explosive Compounds

### Effect of Daramend<sup>®</sup> Reagent on TNT and Total Amino Concentrations at USACE Weldon Spring MO Site



### Influence of Daramend<sup>®</sup> Treatment on RDX and DNT in Soil









# Pilot-scale Technology Demonstration Extended Monitoring Confidential Industrial Site NE USA

Kennedy Jenks Consultants



### **Pilot-scale Treatment of TNT in Soil**



#### **Experimental Design**

**PeroxyChem** 

- Soil was loaded into purpose-made 10 y<sup>3</sup> open-top steel boxes.
- The experimental design included:
  - Static control (no mixing, no water)
  - Watered control mixed only once
  - Watered control mixed every 14 days
- The treatments included:
  - Organic amendment (wood mulch, 10% w/w) with water but mixed only once,
  - Organic amendment (wood mulch, 10% w/w) with water, mixed every 14 days,
  - Six Daramend<sup>®</sup> treatments (2%, 3%, 4% w/w, either single application with single mixing or sequential dosing with repeated mixing).

## **Pilot-scale Treatment for TNT in Soil**



#### Experimental Design (cont.)

 Daramend<sup>®</sup> reagent is a blend of microscale ZVI and processed plant fiber.

**Environmental** Solutions

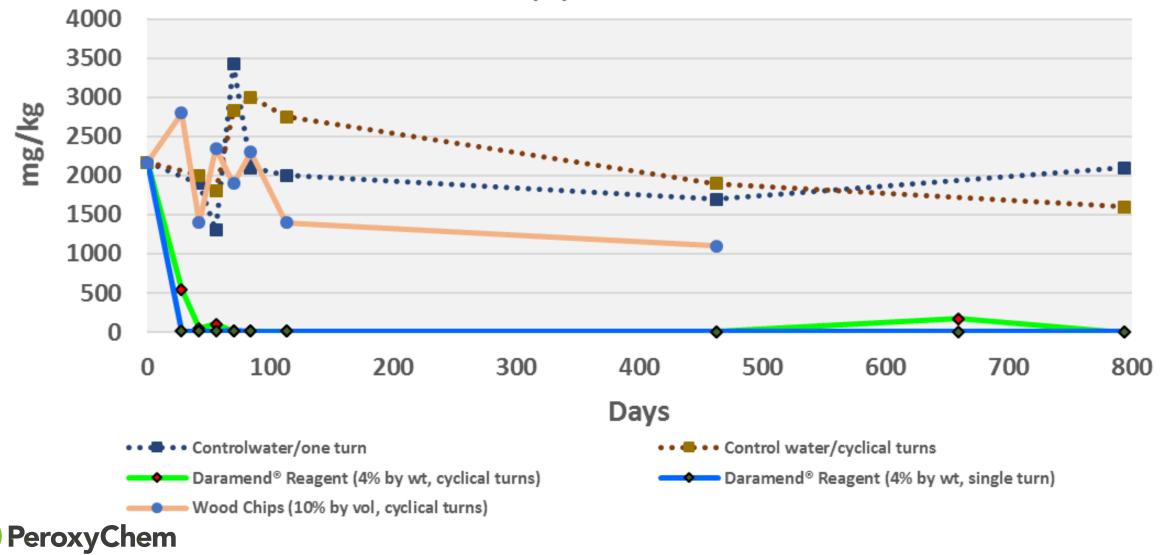
- Daramend dosages were 2%, 3%, and 4% (w/w soil).
- Three treatments received the entire mass of Daramend at the start of treatment and were mixed only once.
- The other three Daramend treatments received the reagent in five smaller doses, each separated by 14 days and accompanied by mixing.
- Water content in all but the static control was maintained near the soil's water holding capacity throughout the project



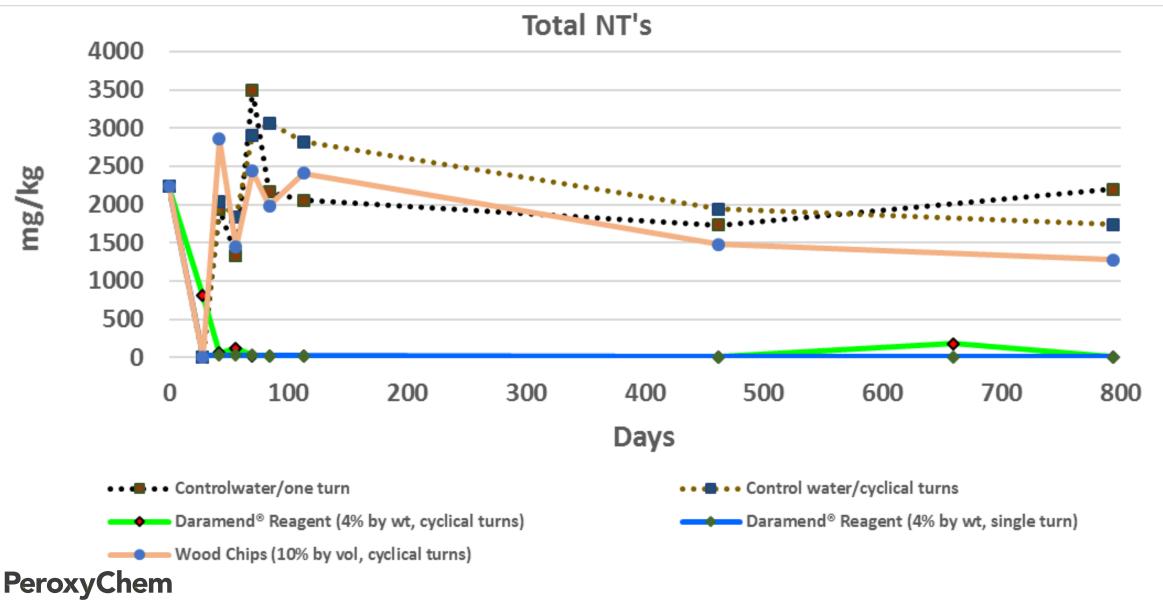




# Monitoring of Indicator Parameters TNT and Breakdown Products Extended Post Treatment Monitoring

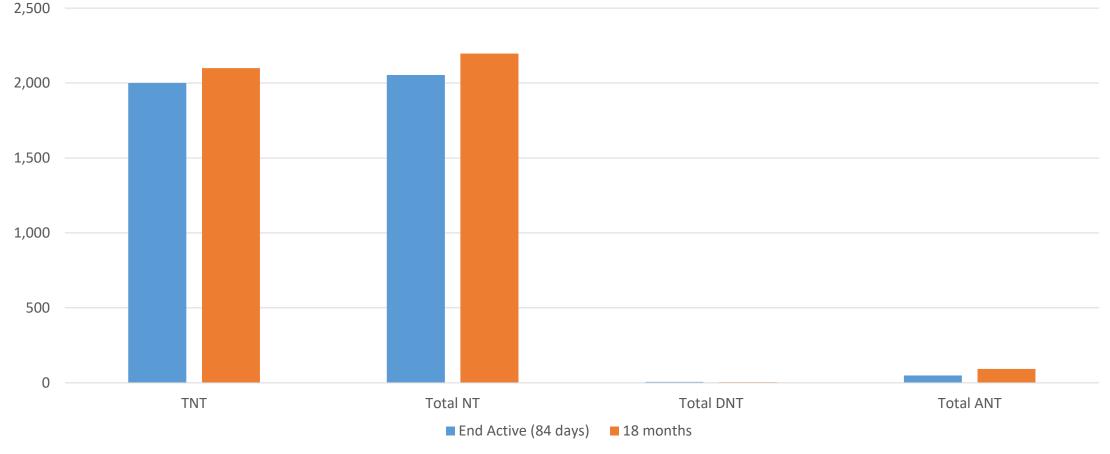

# **Preliminary Indications: Soil pH and Eh**

- Soil pH ranged from 5.0 to 7.0 and there was no apparent relationship between soil amendment type or dosage and changes in soil pH over time.
- Redox potential in the control soil and remained positive throughout the 204-day monitoring period.
- Redox potentials in the soil treated with wood mulch were initially between +170 mV and +223 mV and dropped somewhat to between +70 mV and +80 mV by the end of the monitoring period.
- Redox potentials in the soil treated with Daramend were initially between +137 mV and +253 mV, became strongly negative by day 3 of the monitoring period, and ultimately fell to as low as -390 mV.



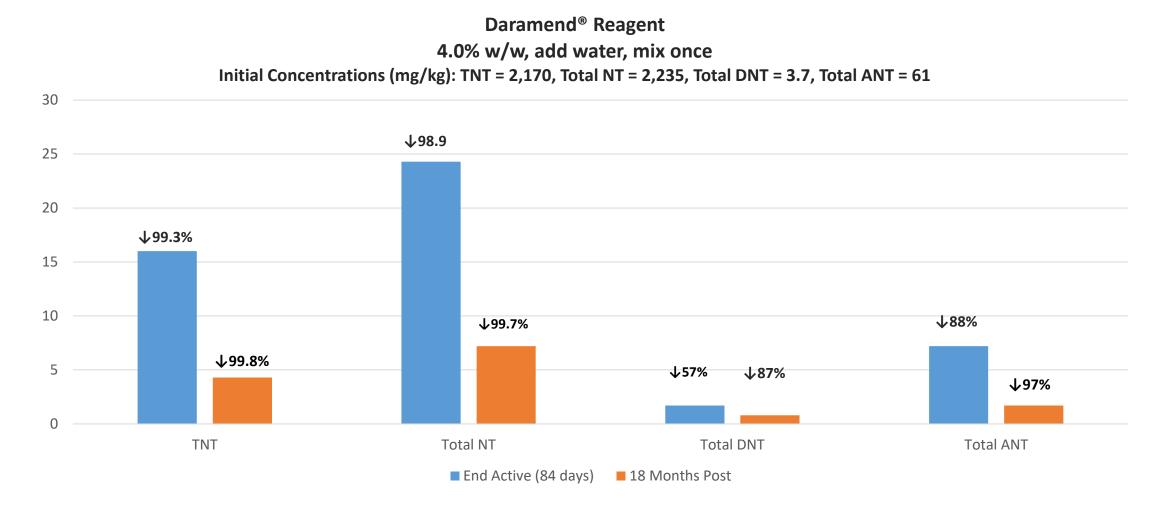

### Influence of Daramend<sup>®</sup> Reagent and Soil Mixing on TNT Concentration in Soil

2,4,6-TNT




### Influence of Daramend<sup>®</sup> Reagent and Soil Mixing on Total Nitrotoluene Concentration in Soil




## **Extended Post Treatment Monitoring**

Control (no amendment, add water, mix once)





### **Extended Post Treatment Monitoring**





## **Pilot-scale Demonstration Summary**

- Reducing conditions were not established in the untreated control and soil treated with wood mulch whether mixed or static.
- TNT was not extensively degraded in the control or wood mulch treatments. Amino compound concentrations increased by as much as 3x in the wood much treatments.
- Strong reducing conditions were established by each of the Daramend<sup>®</sup> treatments and the highest Daramend<sup>®</sup> dosage produced strongest reducing conditions
- The concentrations of TNT and its breakdown products remained quite stable in the controls and the wood mulch treatments, whether the soil was mixed or left to static.
- The NJDEP residential soil remediation standards for TNT, 2,6-DNT, 2,4-DNT, 2-A-4,6-DNT, and 4-A-2,6-DNT were all achieved in response to Daramend<sup>®</sup> treatment.
- No advantage gained from repeated small Daramend<sup>®</sup> applications with additional mixing versus single application with single mixing
- TNT and amino compound concentrations continued to decrease in Daramend<sup>®</sup> treated soil during extended monitoring over 18 months.







# **Case Study**

# **Naval Weapons Station Yorktown**

Yorktown VA

### **Daramend® at Naval Weapons Station Yorktown**

- 8,400 y<sup>3</sup> soil (*ca*. 12,000 tons)
- Soil TNT concentrations as high as 43,000 mg/kg (average about 10,000 mg/kg)
- Treatment goals were 14 mg/kg for TNT and 5 mg/kg for RDX
- Daramend<sup>®</sup> was selected through the FS Process
- Ex-situ treatment of soil and sediment (impacted by effluent from washout of TNT manufacturing plant)
- Engineered Biocell, covered to prevent flooding and allow extended treatment season
- Completed seven batches (1,200 y<sup>3</sup>/batch)



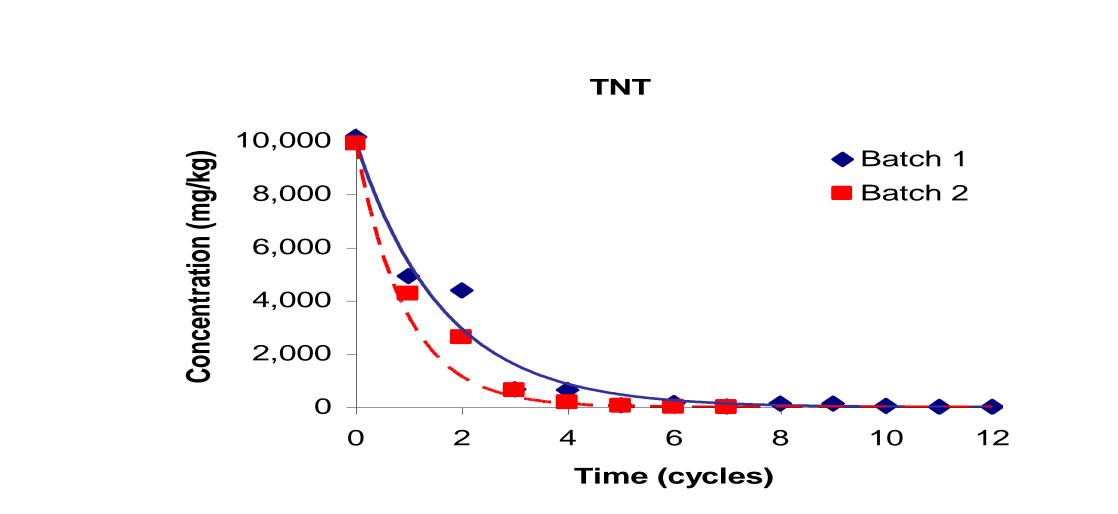
# **NWS Yorktown: Biocell Construction**





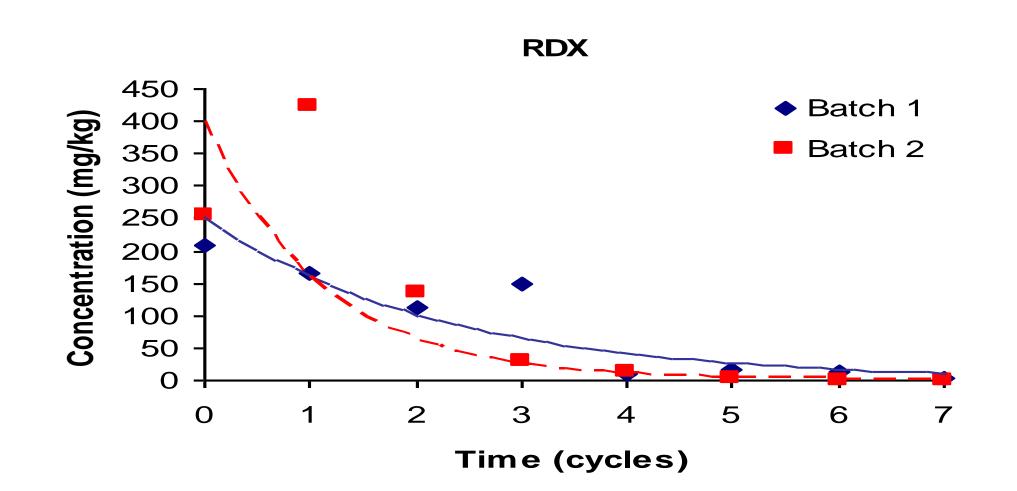
# **NWS Yorktown: Biocell Loading**






# **NWS Yorktown: Biocell Cover Construction**






### **NWS Yorktown: TNT Treatment Results**

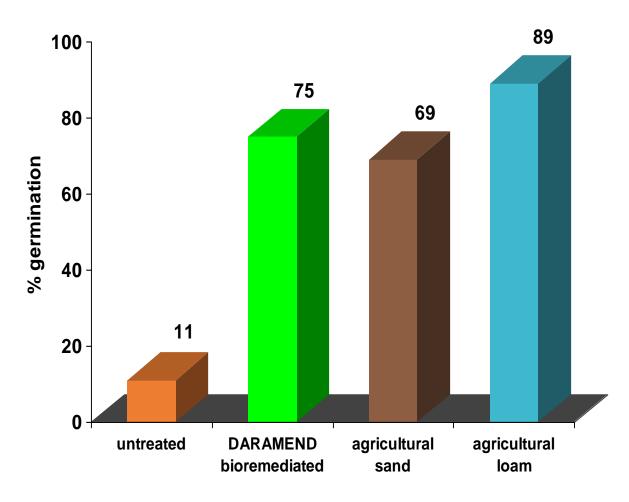




### **NWS Yorktown: RDX Treatment Results**






### Influence of Daramend<sup>®</sup> Treatment on TNT Concentrations in NWS Yorktown Soil

|          |         |           |         |           | <b>V</b> 0 | 0/                 |         |                   |  |
|----------|---------|-----------|---------|-----------|------------|--------------------|---------|-------------------|--|
| Sampling | Batch   | Batch One |         | Batch Two |            | <b>Batch Three</b> |         | <b>Batch Four</b> |  |
| Zone     | Initial | Final     | Initial | Final     | Initial    | Final              | Initial | Final             |  |
| 1        | 14,000  | 4.1       | 240     | 4.0       | 1,520      | 0.6                | 12,400  | 2.0               |  |
| 2        | 7,900   | 6.5       | 3,500   | 5.6       | 2,400      | 10.4               | 5,700   | 12.0              |  |
| 3        | 12,000  | 3.1       | 1,600   | 7.1       | 1,560      | 0.5                | 43,400  | 2.4               |  |
| 4        | 17,000  | 7.0       | 38,650  | 3.6       | 8,000      | 1.0                | 351     | 1.3               |  |
| 5        | 19      | 2.6       | 7,000   | 0.25      | 2,210      | 2.7                | 929     | 1.3               |  |
| 6        | 5,100   | 5.7       | 5,900   | 3.3       | 15,500     | 11.5               | 192     | 1.0               |  |
| 7        | 33,000  | 8.8       | 9,300   | 1.8       | 30,200     | 5.7                | 19.5    | 1.2               |  |
| 8        | 1,300   | 2.9       | 31,873  | 1.2.0     | 10,900     | 2.0                | 5,870   | 1.1               |  |
| 9        | 8,400   | 14.0      | 1,000   | 14.0      | 40,400     | 9.5                | 333     | 0.8               |  |
| 10       | 2,800   | 6.8       | 1.7     | 4.0       | 40,900     | 8.8                | 12,000  | 12.6              |  |
| Mean     | 10,151  | 6.2       | 9,906   | 4.5       | 15,359     | 5.3                | 8,119   | 3.6               |  |

**TNT Concentration (mg/kg)** 



### Influence of Daramend<sup>®</sup> Treatment on Tomato Seed Germination NWS Yorktown Soil



PeroxyChem

- Soil collected from zones 1, 2, and 3 of batch 4 (before and after treatment)
- Pretreatment TNT about 20,000 mg/kg and post treatment about 5 mg/kg
- Tomato (Solanus lycopersicum) seed
  germination comparison
- Soil moisture adjusted to 60% WHC
- No addition of nutrients
- Incubation at room temperature (20±2°C)

# **Completed Daramend® Projects**

- ✓ Iowa Army Ammunition Plant, Middletown IA (RDX, HMX, TNT)
- ✓ Yorktown Naval Weapons Station, Yorktown VA (TNT, RDX)
- ✓ Joliet Army Ammunition Plant, Joliet IL (RDX, DNT)
- ✓ Raritan Arsenal, Edison NJ (TNT)
- ✓ **Tooele Army Ammunition Depot, Tooele UT** (RDX, TNT)
- ✓ Hawthorne Army Depot, Hawthorne NV (RDX, TNT, HMX, TNB)



# **Comparative Soil Treatment Costs**

| Technology          | Mobilization/Demobilization     | Treatment | Total                   |  |  |  |
|---------------------|---------------------------------|-----------|-------------------------|--|--|--|
|                     | Unit Cost (\$/ton treated soil) |           |                         |  |  |  |
| Daramend®           | 75                              | 90        | <b>165</b> <sup>1</sup> |  |  |  |
| Windrow Composting  | 75                              | 150       | <b>225</b> <sup>1</sup> |  |  |  |
| Bioslurry           | 105                             | 204       | <b>309</b> <sup>1</sup> |  |  |  |
| Alkaline Hydrolysis | 105                             | 130       | <b>235</b> <sup>2</sup> |  |  |  |

1. Estimates based on treatment of 25,000 tons of RCRA hazardous soil (Jerger, D. and Woodhull, P. *In*: Biodegradation of Nitroaromatic Compounds and Explosives. 2000. *Eds*.: Spain, J., Hughes, J, and Knackmuss, H.-J.

2. Estimate based on available literature data.







# **Questions & Answers**

# Discussion